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Cronin B, Stevenson IH, Sur M, Körding KP. Hierarchical Bayes-
ian modeling and Markov chain Monte Carlo sampling for tuning-
curve analysis. J Neurophysiol 103: 591–602, 2010. First published
November 4, 2009; doi:10.1152/jn.00379.2009. A central theme of
systems neuroscience is to characterize the tuning of neural responses
to sensory stimuli or the production of movement. Statistically, we
often want to estimate the parameters of the tuning curve, such as
preferred direction, as well as the associated degree of uncertainty,
characterized by error bars. Here we present a new sampling-based,
Bayesian method that allows the estimation of tuning-curve parame-
ters, the estimation of error bars, and hypothesis testing. This method
also provides a useful way of visualizing which tuning curves are
compatible with the recorded data. We demonstrate the utility of this
approach using recordings of orientation and direction tuning in
primary visual cortex, direction of motion tuning in primary motor
cortex, and simulated data.

I N T R O D U C T I O N

A primary goal of many neuroscience experiments is to
understand the relationship between the firing properties of a
neuron and a single external variable. For sensory neurons, this
external variable is typically a property of the stimulus, such as
the orientation of a bar or a grating (cf. Hubel and Wiesel 1959,
1962). For motor neurons, this external variable typically refers
to a property of the executed movement, for example the
direction of hand movement (e.g., Georgopoulos et al. 1986).
The relationship between the external variable and the firing
rate, the tuning curve (see Fig. 1A), is one of the most
frequently used tools to describe the response properties of
neurons.

In these experiments, researchers often wish to answer
questions such as the following. (1) Is the recorded neuron
selective for the stimulus property in question? For example, a
number of studies have asked what percentage of neurons in
visual cortex are tuned to orientation (e.g., Maldonado et al.
1997; Ohki et al. 2005). 2) If the neuron is selective, how can
its selectivity be described quantitatively? For example, many
studies describe how well a neuron is tuned to the orientation
of a stimulus (Carandini and Ferster 2000; Ringach et al.
2002). 3) How much uncertainty remains in this quantification
after all of the evidence from the data has been taken into
account? Often studies aim at giving error bounds on estimated
neuronal properties. For example, it has long been a debate if
neurons have sharper orientation tuning late in response than
earlier in the response (Gillespie et al. 2001; Ringach et al.

1997a). Answering such questions demands reliable margins of
certainty (Schummers et al. 2007). 4) Given two or more
hypotheses concerning the functional or qualitative form of the
neuron’s selectivity, for which of these hypotheses does the
data provide the most evidence (Amirikian and Georgopulos
2000; Swindale 1998)? For example, it has been asked if
orientation-selective cells in monkey striate cortex are tuned in
the shape of a so-called Mexican hat (Ringach et al. 1997a).
5) Do the neuron’s selectivity properties change after an
experimental manipulation, either qualitatively or quantita-
tively? For example, several studies have asked whether adap-
tation, pharmacological intervention, or attention affect the
tuning of neural responses to visual stimuli (Dragoi et al. 2001;
McAdams and Maunsell 1999; Nelson et al. 1994; Sharma
et al. 2003; Somers et al. 2001), while others have posed
similar questions in the motor domain (Gandolfo et al. 2000; Li
et al. 2001).

In addition to well controlled experiments, answering the
questions in the preceding text requires statistical tools. Gen-
erally, there are two classes of methods for statistical analysis
of tuning curves: parametric methods, which assume an ex-
plicit tuning function with several parameters, and nonpara-
metric methods, which allow for essentially complete freedom
in the form the tuning curve can take. Here we focus on
parametric methods, such as circular Gaussian models for the
orientation selectivity of simple cells in primary visual cortex
(Hubel and Wiesel 1959, 1962) or cosine tuning models for
direction of movement in primary motor cortex. These para-
metric models are particularly powerful when we know the
form of tuning curves from past research—until the form is
known nonparametric analysis such as spike-triggered averag-
ing may be more appropriate. From a statistical point of view,
we wish to estimate the parameter values given the data,
estimate confidence intervals for the parameters, and select the
best model from a set of possible models.

There are a number of well-established techniques in the
statistical literature for solving these problems such as maxi-
mum likelihood estimation (MLE) (e.g., Swindale 1998), re-
verse-correlation (Simoncelli et al. 2004), boot-strapping (Stark and
Abeles 2005), model comparison methods, and many others
(Kass et al. 2005). These approaches have provided principled
answers to scientific questions across a wide range of species,
brain areas, and experimental manipulations. In this paper, we
introduce a set of methods based on Bayesian statistics, which
complement and extend these previous approaches for tuning-
curve analysis.

Bayesian models start by formalizing how the variables we
are interested in depend on one another and how uncertainty
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arises. In neuroscience, this implies specifying the assumptions
we have about how neural responses are generated from stimuli
or movements. We first describe the framework for making
these assumptions (a Bayesian hierarchical modeling frame-
work). Second, we present a Markov chain Monte Carlo
(MCMC) sampling process for performing the statistical infer-
ence procedures necessary for estimation of parameters and
their credibility intervals, as well as, hypothesis testing. The
central difference between the Bayesian approach presented
here and more commonly used methods is that we attempt to
describe the entire distribution over tuning curves (the poste-
rior probability distribution) rather than a single tuning-curve
estimate (such as the maximum likelihood estimate). Each
point in this posterior probability distribution describes how
compatible a given tuning curve is with the measured data.
Samples from this distribution allow for straightforward esti-
mation of parameters and error bars, as well as, hypothesis
testing and model selection.

For many analyses, Bayesian methods yield the same results
one would obtain when using more traditional ones. However,
there are two cases where Bayesian methods can be particu-
larly helpful: when there is limited data and when there are
many parameters. Both cases are typical of problems in neu-
roscience where recording times are limited and neurons ex-
hibit complicated tuning properties. Moreover, in both cases,
estimating the parameter of tuning curves is difficult. Without
considering distributions over parameters or using priors most
models may over-fit the data. In the descriptions that follow,
we focus on illustrating the utility of Bayesian methods for
limited data and assume noninformative (flat) priors over the
parameters. When there are many parameters, informative
priors are often useful, but the application of these priors may
require specific knowledge about the problem. However, even
without using informative priors, many problems may benefit
from Bayesian approaches, given the fact that electrophysio-
logical experiments obtain datasets of limited size.

The statistical methods described here have been success-
fully applied in a range of scientific fields (Gelman et al. 2004;
Liu 2002; MacKay 2003; Metropolis et al. 1953; Robert and

Casella 2004). In electrophysiology, MCMC sampling has
been used for fitting peristimulus time histograms (Dimatteo
et al. 2001), fitting nonparametric tuning curves (Kaufman
et al. 2005), spike sorting (Nguyen et al. 2003; Wood et al.
2006), and neural decoding. However, these methods, and
Bayesian methods in general, have not yet been adopted by
neurophsyiologists on a large scale. One major barrier to their
adoption has been the difficulty in implementing MCMC
sampling routines that are both appropriate and computation-
ally efficient. To alleviate this obstacle, we make available a
software toolbox that will allow researchers to easily and
routinely apply all of the methods discussed here in the
analysis of their own data.

M E T H O D S

The spiking patterns of neurons will depend both on the properties
of a stimulus and on the tuning properties of the neuron. In a typical
experiment, we observe signals from neurons (e.g., spikes), and we
want to ask which tuning properties are exhibited by the recorded
neuron. In Bayesian terms, we want to ask which tuning properties are
most consistent with the measured data given assumptions about their
functional form (e.g., Gaussian or sigmoid). These Bayesian models
assume an explicit generative process that defines how the observed
firing patterns are (statistically) related to both the stimuli and the
underlying tuning properties of the recorded neurons. We then use
numerical methods to optimally estimate the values of the tuning
properties as well as the uncertainty which remains (i.e., the error
bars).

Hierarchical model

The key feature of our analysis method is that it describes a
(hypothesized) probabilistic relationship between the parameters of a
chosen tuning-curve (TC) function, any external variables (e.g., stim-
uli), and the neuronal responses collected in an experiment (see Fig.
1, B and C).

Given experimental data, such as spike counts, knowledge of the
stimuli presented over the course of the experiment, and an assump-
tion about the functional form of the TC, we want to know how likely
each set of tuning-curve parameters is. Example tuning-curve func-

FIG. 1. Introduction. A: a schematic illustrating the setup
of the sensory neuroscience experiments for which the
analyses discussed here are applicable. An animal, either
anesthetized or awake, is presented with stimuli that vary
along a single feature dimension. Neuronal responses to
these stimuli are recorded and then described using tuning-
curve functions. B: an example tuning-curve model, the
circular Gaussian function. The function can be described
by the values of 4 parameters: the baseline (B), amplitude
(A), preferred orientation (PO), and tuning width (TW).
C: a schematic of the generative process assumed by the
hierarchical statistical model. A neuron exhibits tuning
described by a particular tuning-curve function. The
firing rate in response to a stimulus of a particular value
is determined by the value of this tuning-curve function
when evaluated at this location. The response for a
particular trial is then generated according to the assumed
probability model, here a Poisson process.
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tions, including the circular Gaussian and the sigmoid function, are
described in the supplemental materials.1

In statistical terms, this means that we need to estimate the param-
eters of the tuning function p1 through pK (such as tuning width and
preferred orientation) from the observed neural responses x and
stimuli S (both vectors of length N, the number of experimental trials).
We also assume that we may have some prior knowledge [Pr(pj��j)]
about the properties of these parameters, as characterized by a hyper-
parameter �.

We can use Bayes’ rule to estimate the posterior distribution of the
TC parameter variables

Pr�p1 . . . pK�x,S,�1 . . . �K� � Pr�x�p1 . . . pK,S,�1 . . . �K��
j�1

K

Pr�pj��j�

� �
i�1

N

Pr�xi�RTC�Si; p1 . . . pK���
j�1

K

Pr�pj��j�

(1)

RTC is the value which results from evaluating the TC function for the
particular stimulus value Si (i.e., the stimulus presented on trial i),
given parameter values p1 through pK. The term on the left-hand side
of the equation is the joint posterior distribution of the parameter
values, whereas the two terms on the right-hand side are the data
likelihood and the prior distributions of the parameters.

This model can be adapted to suit a particular experimental context
in two main ways. First the TC function should be chosen to reflect as
accurately as possible the hypothesized selectivity properties of the
neuron in question. For example, for neurons in primary visual cortex,
a sigmoid function might be chosen when the stimulus contrast is
being manipulated (e.g., Sclar et al. 1989), while a circular Gaussian
(CG) function might be chosen when stimulus orientation is varied
(e.g., McAdams and Maunsell 1999). Second, an appropriate proba-
bility model should be chosen to describe the relationship between the
TC model output and the observed data. For example, a Poisson
probability model might be appropriate when the data consists of
spike counts, whereas a normal (i.e., Gaussian) model might be
preferred when the data consist of continuous values such as fluores-
cence readings from confocal or two-photon microscopy (see the
supplemental materials for more details).

MCMC sampling

Because the TC functions commonly used to model neural re-
sponses can impose complex nonlinear relationships between the
parameters of interest, it is usually impossible to compute the joint
posterior in Eq. 1 analytically. Sampling methods such as MCMC
offer a powerful and flexible set of tools by which to overcome these
limitations (Liu 2002; Metropolis et al. 1953; Robert and Casella
2004). These methods can be used to compute an approximation of the
joint posterior parameter distribution.

Sampling methods operate by performing a search through parameter
space. In this regard, they are similar to optimization techniques such as
least-squares fitting methods. Unlike standard optimization algorithms,
which only move “uphill” from less optimal solutions to better ones,
sampling methods move both up- and downhill to explore the parameter
space. The resulting random walk through parameter space is biased such
that the amount of time spent in any region of the space is proportional
to the probability density of the parameter values corresponding to that
region. As a result, MCMC sampling returns an approximation of the joint
probability distribution of the model parameters, given the data, any prior
information, and assumptions about the form of the model (see Fig. 2A).

Sampling for each parameter pi proceeds by starting with the
current sampled value, pi

(t), and proposing a new value p*i. While this
proposal can in principle be generated in a number of ways, we will

use normally distributed proposals the mean of which is the current
sample value, i.e., p*i � N(pi

(t), �0). Next, the probability in Eq. 1 is
computed for the two different values of pi, yielding q*i � Pr(p1

(t) . . .
p*i . . . p

K

(t)�x, S, �1 . . . �K) and qi
(t) � Pr(p1

(t) . . . pK
(t)�x, S, �1 . . . �K).

If q*i is greater than qi
(t), then the proposal is accepted, and pi

(t�1) 4
p*i. If q*i is less than qi

(t) (i.e., the proposal represents a “downhill”
move), then it might still be accepted with a probability equal to the
ratio of the two posterior probabilities, q*i �qi

(t); otherwise, it is rejected.
If the proposal is rejected, then the previous sample value is main-
tained, i.e., pi

(t�1) 4 pi
(t).

It can be shown that sampling according to this procedure will
result in parameter samples the values of which approximate the joint
posterior distribution of the parameters, given the data (Metropolis
et al. 1953). The samples can therefore be used as a proxy for the
complete joint parameter distribution, and questions about this true
distribution can be answered by referring to the samples. Figure 2B
shows the results of sampling using a circular Gaussian tuning-curve
function on simulated data, for which ground truth is known.

It should noted that optimization techniques, such as those that use
the mean squared error (MSE), also make (implicit) assumptions
about the joint probability distribution of the model parameters. In
particular, such methods assume that the parameters are normally
distributed, an assumption which may not be appropriate in many
cases. Figure 2B also shows the fit obtained with such a method.

In the discussion that follows, we assume that we have applied an MCMC
procedure like the one just described to obtain M samples for each of the K
tuning-curve model parameters: {(p̃1

(1) . . . p̃1
(M)} . . . (p̃K

(1) . . . p̃K
M)}.

Bayesian model selection

Once we use Bayesian sampling methods to estimate tuning func-
tions, we can straightforwardly use these methods to also ask if one
model is better at explaining the data than another model. To compare
different models in this way, it is necessary to compare how well each
of them can explain the data. In a Bayesian setting, this implies
integrating over the specific parameter values (in Eq. 1). Bayesian
model selection relies on the ratio of the probabilities of each model
holding true, given the experimentally observed data (MacKay 2003)

Pr�M2�x�
Pr�M1�x�

�
Pr�M2�
Pr�M1�

Pr�x�M2�
Pr�x�M1�
Ç

Bayes Factor

(2)

Here, M1 and M2 are two models to be compared, and x is the
observed data, as before. The first term on the right-hand side is the
prior preference for one model over the other. In all cases, we assume
that the two models being compared are, a priori, equally probably;
under this assumption, this term is equal to 1. The second term, called
the Bayes factor, is the ratio of the likelihood of the observed data,
given each model (i.e., with all model parameters integrated out). This
Bayes factor measures how much support the data provides for one
model relative to the other. For example, if this quantity is 10, then it
would be reasonable to say that the data provides evidence that model
2 is 10 times as likely to explain the data as model 1.

In general, it can be very difficult to actually perform the necessary
integration to obtain Pr(x�M). For models of the complexity described
here, however, very reasonable approximations of this integral can be
obtained directly from the MCMC samples. One reasonable approx-
imation of this quantity is simply the harmonic mean (Kass and
Raftery 1995) of the sampled probabilities

Pr�x�M� � �1

m
�
i�1

m

Pr�x�p�i�,M��1��1

(3)

This quantity is easy to compute from the output of the MCMC
sampling routing, and this procedure provides good estimates of how
preferable one model is relative to another (especially for low-1 The online version of this article contains supplemental data.
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dimensional models). For higher dimensional models, other methods
can be more stable (Chib and Jeliazkov 2001).

Simulations

Figs. 4 and 7 are based on the model of orientation/direction tuned
simple cells used throughout the text. We use a circular Gaussian
tuning curve (b � 1, a � 4, � � 90°, � � 20°) (Fig. 4A and Fig. 7,
rows 2 and 3) or a direction-selective (asymmetric) circular Gaussian
tuning curve (b � 1, a1 � 4, a2 � 2, � � 90°, � � 20°; Figs. 4B and
7, bottom). Figure 7 (top) uses an untuned neuron with b � 1. All
models use Poisson noise, and stimulus directions were selected
uniformly between 0 and 180° or 0 and 360°. One trial corresponds to
a single random sample from a Poisson distribution with the mean
given by the tuning-curve model at the randomly selected stimulus
orientation. After 10,000 burn-in samples, 20,000 samples from the
posterior were drawn. To reduce correlations between the samples
only 400 samples (every 50th) were used for later estimation and
model selection. The likelihood ratios in Fig. 7 were computed using
cross-validated data from the same underlying tuning functions.

Bootstrap and nonlinear optimization

The bootstrap method is a general and powerful approach to
statistical inference that relies on the basic operation of creating
surrogate data sets by resampling from the observed data (Efron and
Tibshirani 1986). Given a set of (presumed independent) observations
x � {xi . . . xn}, a single bootstrap sample x(b) is created by sampling,
with replacement, from the original collection of data until the sample
contains the same number of data points as the original set. For
example, x(1) � {x1,x1,x3, x4,x4} is a valid bootstrap sample when n � 5.

The bootstrap can be used to compute the uncertainty (i.e., error
bars) about any summary of the observed data, T(x). The general
bootstrap procedure is as follows: 1) construct B bootstrap samples
from the original observations, as described in the preceding text.
2) For each sample b, compute T(x(b)); 3) construct confidence
intervals from the sample summaries.

Our complete method for assessing the confidence intervals on the
tuning-curve parameters combines nonlinear optimization for curve
fitting (to compute the parameter estimates for each bootstrap sample),
and the bootstrap for assessing the degree of uncertainty about those
estimates. 1) Draw B bootstrap samples from the observed data. 2) For
each bootstrap sample, use constrained nonlinear optimization with a
squared-error objective function to compute the tuning-curve param-
eter values that best fit the data. 3) For each tuning-curve parameter of
interest, use the estimate provided by the optimization routine on each
bootstrap sample to construct confidence intervals.

This procedure results in a set of parameter samples that can be
compared directly to those samples obtained from the Metropolis
procedure.

R E S U L T S

To estimate tuning curves, several assumptions need to be
made. We need to assume a dimension along which firing rates
may vary (e.g., direction of movement). We need to assume a
functional form of the tuning curve (e.g., cosine). Last, we
need to assume how the tuning curve affects neural firing (e.g.,
assuming Poisson noise). To estimate the parameters of a
tuning curve, we then use MCMC sampling techniques in the
context of a hierarchical generative model that describes our
prior knowledge about tuning curves; details are provided in
METHODS and the supplemental methods section.

To give a more concrete example, a common generative
model for data recorded from simple cells in mammalian
primary visual cortex is a circular Gaussian tuning curve,

characterized by the baseline value, amplitude, preferred ori-
entation, and tuning width. If spike count data are collected,
then assuming that measurements vary with Poisson noise
might be appropriate (see Fig. 1). Together the tuning-curve
function and the noise model describe how likely the observed
neural signals are given the parameters of the tuning curve
(preferred direction, baseline firing rate, etc). Applying Bayes’
rule, this likelihood can then be combined with prior assump-
tions to calculate the posterior probability distribution over the
parameters. We can thus calculate how likely each combina-
tion of parameters is given observations from a neuron.

Ideally we would take every possible combination of param-
eters and calculate how likely the measured spikes are given
the assumed combination. However, in many cases this is
simply impossible: if we want to consider 100 values for each
parameter and have five parameters we would have 1010

combinations of parameter values. MCMC is a well-defined
way of having many of the advantages of considering all
possible values without requiring the associated run times. Our
algorithm generates samples from the posterior using the Me-
tropolis method, a particular example of an MCMC technique.
This method produces parameter samples by performing a
random walk through parameter space, proposing new param-
eter values as random perturbations of previously accepted
values. By accepting and rejecting these samples on the basis
of their joint-posterior probability, the algorithm effectively
builds a picture of this distribution (Fig. 2A). By generating
more samples, the distribution can be approximated with arbi-
trary precision. At the conclusion of the sampling procedure,
the collection of parameter samples obtained by the walk can
be used to estimate the most probable parameter values, as well
as the residual uncertainty—the error bars (Fig. 2B).

In the following sections, we demonstrate how these general
methods can be applied by experimentalists to answer a range
of scientific questions that frequently arise in the analysis of
tuning-curve data. We use data obtained from orientation-
tuned neurons in the visual system (V1), from direction-
selective neurons in the motor system (M1) as well as several
simulations to provide specific examples. For illustration pur-
poses, these examples use circular Gaussian tuning-curve func-
tions or cosine tuning functions and a Poisson noise model with
noninformative priors on all parameters. These forms of tuning
curves are frequently used for the study of primary visual
cortex and motor cortex, respectively. The assumption that
neurons spike according to Poisson statistics with a changing
intensity function is the basis of many recent studies of neural
systems. The general approach of using hierarchical generative
models with MCMC for inference applies to a wide range of
tuning-curve and neural models and can easily be extended to
higher dimensional problems (cf. Schummers et al. 2007).
Additional tuning-curve functions and neural models are dis-
cussed in the supplemental materials and the supplied toolbox
supports the use of each of these models.

Estimating parameter values and credibility intervals

In many experiments, one of the first challenges confronting
an experimentalist is to quantify the tuning properties of each
recorded neuron. It is important to compute not only the most
probable parameters but also the range of plausible parameters
(the error bars or credibility intervals). We can pose this
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question more precisely by asking, for each parameter of the
chosen tuning-curve function, what range of parameter values
is consistent with the set of observed neuronal responses? For
example, what is the plausible range of preferred orientations
for an orientation selective neuron in V1?

Questions of this type can be answered directly from a set of
MCMC samples because they approximate the joint posterior
distribution over the parameter values. Parameter values that
are sampled more often correspond to those that are more
likely to account for the data. To obtain, say, a 95% credibility
interval for parameter pi, the samples {p̃i

(1) . . . p̃i
(M)} are first

sorted from lowest to highest to obtain the rank order �p̃i
[1] . . .

p̃i
[M]�. Next, the lowest and highest 2.5% of the samples are

discarded. For example, if 1,000 samples were collected, then
the lowest and highest 25 would be discarded. The remaining
extreme values define the desired error margin (see Fig. 3, A
and B). In the 1,000-sample example, these would be the 26th
and 975th sample from the ranked list. Importantly, this
method does not need to make the assumption that the posterior
is Gaussian. Depending on the model, the distribution may
even been asymmetric or multimodal. As such, this method can
deal with many of the potentially non-Gaussian distributions
occurring in neuroscience.

In addition to credibility intervals, several other statistical
estimates can be calculated from the samples. We can find a
maximum a posteriori (MAP) estimate as well as the median or
mean values of each parameter (Fig. 2B). When the prior over
parameters is noninformative, the MAP estimate is equivalent
to a MLE. However, in many cases, the mean or median
posterior is a more robust estimate of the parameters. These
estimators are optimal in that the posterior mean minimizes the
squared error between the estimated parameter and its true
value while the posterior median minimizes linear loss (Berger
1985). Like the maximum likelihood estimate, these estimators
are asymptotically unbiased and efficient in most cases. The
difference between MLE and Bayes estimators is generally
apparent only for small sample sizes and disappears as more
data are collected. In simulations of orientation-tuned neurons,
for instance, the MLE and Bayes tuning-curve estimates are the
same after �40 trials (Fig. 4). For small sample sizes, using
Bayes estimators, which take the distribution over parameters
into account, can improve estimation.

Visualization of potential tuning curves

The presented approach also allows for simple visualization
of the set of potential tuning curves that are compatible with
the observed data. This visualization can be a useful tool for
understanding the quantitative power that is provided by the
data from a single cell (as used in Figs. 3 and 5). Because the
posterior distribution over potential tuning curves may not be
Gaussian and the parameters may not always be linearly
independent, error bars on each parameter provide only part of
the picture. For instance, the distribution of potential tuning
curves may be skewed or multimodal (Fig. 5, B and E). This is
one advantage of representing an entire distribution over the
tuning curves described by a certain model.

Assaying quantitative changes in response properties

Quantifying tuning properties using the methods in the
preceding text is often merely the first step in answering
scientific questions about physiological data. Frequently, we
wish to know whether a particular manipulation has resulted in
a significant change in tuning properties. For example, it might
be asked whether visual neurons change their orientation se-
lectivity properties in response to attentional influences, sen-
sory pattern adaptation, or perceptual learning (Dragoi et al.
2000, 2001; McAdams and Maunsell 1999) or if the preferred
directions of neurons in motor cortex change in a force field
(Rokni et al. 2007). In these kinds of experiments, neuronal
responses would be measured in both the control and test

FIG. 2. Markov chain Monte Carlo (MCMC) sampling. A: metropolis sam-
pling proceeds by making a biased random walk on the surface defined by the joint
posterior probability density of the model parameters. Shown here are 2 dimen-
sions of this surface for a circular Gaussian tuning-curve function; the preferred
orientation and tuning width parameters are shown, while the amplitude and
baseline parameters are omitted for clarity. The gray lines are the contours of
uniform density. The blue path shows the trajectory of the samples with
rejected proposals shown in red. Note that rejected samples always represent
“downhill” moves, whereas accepted samples can be either up- or downhill. If
enough samples are collected, the number of samples per region will converge
to match the height of the density contours in the region; in other words, the
samples will approximate the distribution. B: each sample corresponds to a
different circular Gaussian tuning curve. Shown here are sampled tuning
curves (light red lines), which are obtained by applying the generative model
to simulated spike count data (black dots) generated from a known tuning
curve (solid black line). Both the sampling method (solid gray line) and
MSE-based nonlinear optimization (solid blue line) perform well in recovering
ground truth in this case. However, the 95% error bounds generated from the
samples (dashed gray lines) are narrower than those obtained from optimiza-
tion, indicating that the hierarchical model and sampling approach is able to
make more efficient use of the data. In addition, plotting the individual samples
provides a nuanced understanding of the range of possible tuning curves which
could have produced the observed data.
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conditions, and MCMC samples would be generated separately
for these two sets of data. To determine whether the data
supports a conclusion of significant changes in tuning, credi-
bility intervals are computed for each of the two conditions as
in the preceding text. To ascertain whether a significant shift
has occurred, it is sufficient to observe whether these two
intervals overlap. If there is no overlap (i.e., the intervals are
disjoint), then the data support the conclusion that the corre-
sponding response property has changed between the two

conditions (see Fig. 3, C and D). If the two intervals do
overlap, then this conclusion is not supported. This negative
result is consistent with two possibilities. First, the underlying
response property might really be unaffected by the experi-
mental manipulation, which is a true negative result. Second,
the tuning property has indeed changed but not enough data has
been collected to reduce uncertainty to the point where this
change can be reliably detected. In neither of the cases will this
method wrongly report a change.

FIG. 3. Parameter estimation. A: spike counts (dots) and sampled tuning curves (lines) from a neuron in anesthetized mouse visual cortex, recorded in response
to gratings of different orientations. On each trial, a different orientation was chosen (x axis), and the number of spikes emitted in response was recorded (y axis).
These data were analyzed using a circular Gaussian TC function and a Poisson noise model. B: parameter sample histograms and credibility intervals for the
sampled tuning-curve parameters. Each panel displays the samples for a different parameter: the spontaneous spike count, the number of spikes emitted in
response to the preferred orientation, the identity of the preferred orientation, and the tuning width of the response. Dashed gray lines indicate the 95% credibility
intervals for each of these parameter values. C: spike counts and sampled tuning curves of the same cell, recorded under both control (blue) and adapted (red)
conditions. The tuning curves suggest that the cell has undergone a significant change in its response properties. D: histograms of each of the sampled
tuning-curve parameter values and their corresponding credibility intervals, similar to B, but here comparing the values obtained in the control and adapted
conditions. Both the baseline firing and amplitude at preferred orientation have changed significantly between the 2 conditions as indicated by the fact that the
credibility intervals are disjoint. The preferred orientation and tuning width parameters are not significantly different between the 2 conditions because the
intervals are overlapping. For all example data shown here, extracellular recordings were performed in mouse visual cortex, using methods similar to those
described in Wang et al. (2006).

FIG. 4. Maximum likelihood and poste-
rior median estimators. Especially for small
sample sizes, the posterior median (or mean)
is often more accurate than the maximum
likelihood estimate. A and B: the mean
squared error of the estimated tuning curve
for these 2 estimators as a function of the
number of trials (simulated data) for a tuned
neuron and a direction-selective neuron (see
insets). We assume a Poisson noise model.
Solid black lines, the true tuning curve; dark
red lines, the posterior median estimate after
50 trials, and light red lines indicate samples
from the posterior. Error bars denote SE over
100 simulations (see METHODS for more
details).
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Assessing selectivity to the stimulus feature using
model selection

In many cases, it is of primary scientific interest to determine
whether a neuron is actually selective for the stimulus property
that is being varied in the experiment. For example, many but
not all neurons in striate cortex are selective for particular
stimulus orientations (Maldonado et al. 1997), and �20% of
neurons in primary motor cortex are not cosine tuned (e.g.,
Georgopoulos et al. 1986). Before drawing conclusions about
the quantitative details of each neuron’s orientation-dependent
response, it is necessary to assess whether the cell is selective
in the first place.

Bayesian model selection (BMS) can be used to determine
how much evidence is provided by the data for one response
model over another (Kass and Raftery 1995; MacKay 2003).
To determine whether a cell is indeed selective for a stimulus
property, BMS can be employed to compare models with two
different tuning-curve functions: one in which the response
varies with the stimulus value, and another in which the
response is assumed to be insensitive to the particular stimulus
(see Fig. 5, A–C).

BMS is similar to traditional hypothesis testing methods
such as the likelihood ratio test in that we compare the
probability of observing the data under each model. However,
unlike the likelihood ratio test, BMS uses Bayes factors—the
ratio of probability assigned to the data by each model, inte-
grating over all possible parameter values. In general, it is
difficult to compute Bayes factors because this integration can
be nonlinear and high dimensional. For models with relatively
small numbers of parameters, however, such as those used
here, approximate Bayes factors can be computed directly from
the MCMC samples (see Eq. 2). Furthermore, the quality of
these estimates can be improved by increasing the number of
samples computed. We have found that excellent results can be
obtained for the models discussed here with very reasonable
computational resources (	1 min/cell on a desktop machine).

A key property of BMS is that it appropriately penalizes
models with more degrees of freedom. This “regularization”
ensures that models with extra parameters are not favored
merely because they are more expressive, which is a well-
known complication in model comparison procedures (Buck-
land et al. 1997; MacKay 2003; Pitt and Myung 2002). This
penalty is in some ways similar to the Akaike information
criterion (AIC) or Bayesian information criterion (BIC). How-
ever, unlike these two methods, the Bayes factor applies to any
priors over parameters or model types.

Comparing different selectivity models

A number of scientific questions can be posed in terms of
BMS. For example, some neurons in primary visual cortex of
the cat are direction selective, meaning that their responses to
a grating of a particular orientation depend on the direction of
motion of the grating. Other cells are not direction selective,
and their responses are not modulated by the direction of
motion of the grating. BMS can be used to distinguish between
these two types of cells. In this case, two different tuning-curve
functions would be used, each of which corresponds to one of
the two hypotheses. The first is a circular Gaussian function
with a periodicity of 180°; this function represents a nondirec-
tion-selective response because its values are the same for
stimuli of opposite direction. The second TC function is a
circular Gaussian with a periodicity of 360°, which represents
responses for only one direction of motion (see Fig. 5, D and
E). In the case of neurons in motor cortex, one might compare
a cosine tuning function and a constant tuning function (Fig. 6).
When BMS is applied in this setting, using the methods
described above, its output indicates the strength of evidence
provided by the data that a particular cell is tuned for direction
of motion.

In real data, the “true” tuning curve is generally unknown.
However, we can illustrate some of the features of BMS using
simulated data. To this end, we performed four simulations where

FIG. 5. Model selection for V1 neurons.
A: spike counts (dots) and sampled tuning
curves (lines) for an example cell that is not
significantly tuned, as indicated by the fact
that the evidence provided by the data for a
tuned model (blue lines) is less than that for
an untuned model (red lines). These data
were analyzed using a circular Gaussian TC
function, and a Poisson noise model. B: as in
A except that the data provide marginally
more support for the tuned model. C: as in A
except that the data provide overwhelming
support for the tuned model over the untuned
model. D: as in A–C except that 2 different
tuning models are being compared. Blue
lines correspond to samples from a circular
Gaussian TC model with periodicity of 180°,
and red lines indicate a circular Gaussian
with periodicity of 360°. For the cell shown
here, the data provide more evidence for the
180° model, indicating that the cell is not
significantly tuned for the direction of mo-
tion of the stimulus. E: as in D except that the
data for this neuron provide more evidence
for the 360° periodicity model, indicating
that the cell is selective for the direction of
motion of the stimulus.
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the true tuning-curve and noise model are known (Fig. 7). We
simulated spikes from an untuned neuron (Fig. 7, top), an
orientation-tuned neuron (Fig. 7, 2nd row), a nondirection-
selective neuron (Fig. 7, 3rd row), and a direction-selective
neuron (Fig. 7, bottom). For each of these sets of simulated
data, we then generated MCMC samples from two models:
untuned and tuned models for the first two cases (Fig. 7A) and
nondirection-selective and direction-selective models for the
second two cases (B). A Bayes factor 
1 (or a log-ratio 
0)
suggests that model 1 is preferred, while a Bayes factor 	1
(log-ratio 	0) suggests that model 2 is preferred. Similar to
cross-validated likelihood ratio tests, the Bayes factor selects
the correct underlying tuning-curve model after a relatively
small number of trials (Fig. 7, right).

Comparison with the bootstrap

One established alternative to the methods presented here is
bootstrapping. Bootstrap methods are a very general set of
techniques by which to estimate the residual uncertainty of
arbitrary statistical summaries, including credibility intervals

for model parameters (Efron and Tibshirani 1997). These
techniques have reached fairly wide use in neuroscience and
solve some of the same problems that the techniques presented
here address, particularly the estimation of error-bars (Brown
et al. 2004; Kass et al. 2005; Paninski et al. 2003; Ringach et al.
2003; Schwartz et al. 2006; Stark and Abeles 2005; Ventura
et al. 2005). Briefly, the bootstrap involves generating a series
of surrogate data sets (“bootstrap samples”) by sampling with
replacement from the observed data; estimates of the uncer-
tainty—error bars—are then computed by computing separate
estimates from each of these samples. As such, bootstrap
methods are a natural point of comparison for the hierarchical
modeling and sampling methods described here. We have
performed a series of comparisons between the two methods,
using simulated orientation data for which the “true” tuning
curve was known. A complete description of the bootstrap
procedure used for these comparisons is provided in METHODS.

Figure 8 shows the results of several comparisons between
the two methods. While the bootstrap performs similarly to
posterior sampling when a large amount of data are available
(Fig. 8A), the advantage of sampling becomes clear when less
data are available. In this situation, the fully Bayesian approach
is better able to recover the underlying tuning curve. This
effect has been noted previously (Kass et al. 2005) and can
generally by avoided by collecting more data, but it points to a
more fundamental difference in the way these methods test
tuning-curve models.

In addition to robustness to small sample sizes, the Bayesian
method has several advantages over the bootstrap. Bootstrap-
ping generally requires a nonlinear optimization, which can be
subject to local minima in the error function. Manual interven-
tion or more complicated methods, such as double bootstrap,
may be necessary to correct for biases and dependencies in
bootstrap estimates (Davison and Hinkley 1997). The Bayesian
approach, on the other hand, does not include any optimization.
Assuming appropriate mixing, the MCMC samples approxi-
mate the full posterior distribution over the parameters. More-
over, these techniques can easily be adapted to a wide range of
tuning-curve functions, noise models, and priors.

D I S C U S S I O N

Here we have shown how methods based on MCMC can
help answer frequently occurring questions in the realm of
electrophysiology. We have shown that the same method can
be used to estimate properties of neural tuning for several kinds
of neurons, obtain bounds on their values, examine if they
change from one condition to the next and ask which model
best explains the data. With the provided toolbox these meth-
ods are easy to implement and have the potential to signifi-
cantly improve practical data analysis.

Comparison with other methods

The primary difference between the Bayesian sampling
approach and more traditional approaches such as reverse-
correlation, maximum likelihood estimation, and bootstrapping
is that we attempt to consider all the tuning curves that would
be compatible with the data. This analysis can reproduce the
results from MLE by searching for the parameter values that
are associated with the highest sample density and a noninfor-

FIG. 6. Model selection for M1 neurons. Spike counts (dots) as a function
of movement direction for 2 cells recorded while a monkey performed a
center-out reaching task (414 trials). A: an example cell that is significantly
tuned (Bayes’ factor 
100); B: an example cell which is only possibly tuned
(Bayes’ factor 
10). The 2 models being compared are a cosine tuning-curve
function (blue lines) and a constant tuning function (red lines) both with a
Poisson noise model.
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mative prior. It obtains the same results as bootstrapping when
there is enough data. However, for small sample sizes, Bayes
estimators, such as the posterior median, and Bayesian credi-
bility intervals are often more robust than these alternatives.

In hypothesis testing, Bayesian sampling methods converge
to the results from likelihood ratio tests as well as AIC/BIC,
under certain assumptions. For nonlinear or hierarchical mod-
els, the Bayes factor offers a more principled approach to
model comparison. As experimental methods advance and
stimulus-response models become more sophisticated, accurate
model selection will become more and more important. By

looking at the distribution over potential tuning curves and not
just the most likely tuning curve, physiologists may be able to
gain insight into scientific questions as well as the statistical
properties of tuning-curve models.

Another key feature of the sampling approach is its flexi-
bility. Most analyses are based on an implicit assumption of
Gaussian noise (Amirikian and Georgopulos 2000; Swindale
1998), an assumption that is inappropriate for some common
forms of neuronal data (e.g., spike counts). The hierarchical
model described here can incorporate a range of probability
models, such as the Poisson and negative binomial distribu-

FIG. 7. Model selection with simulated data. A and B: 2 scenarios that one might encounter in analyzing data from primary visual cortex. In A, we want to
determine whether a neuron is tuned (model 1) or untuned (model 2). Blue and red lines show samples from the posterior distribution of models 1 and 2 given
100 trials of simulated spike data (dots). The thick black lines show the true tuning curves. Using the posterior samples we can then compute the likelihood
estimates and the evidence for each model. Both the Bayes factor and cross-validated likelihood ratio prefer the untuned model (model 2) when the simulated
neuron is untuned (top row, left) and prefer the tuned model (model 1) when the simulated neuron is tuned (2nd row, left). In B, we want to determine whether
a neuron is not direction selective (model 1) or is direction selective (model 2). Again, the cross-validated likelihood ratio and the Bayes factor both prefer the
correct model after 100 trials. Boxes on the likelihood ratio and Bayes factor denote lower and upper quartiles (over 100 simulations). Whiskers denote the most
extreme values within 1.5 times the interquartile range. Outliers have been removed for clarity (see METHODS for more details).
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tions in addition to Gaussian. This modeling flexibility also
means that the framework described here can be directly
applied to data other than spike counts, including fluores-
cence measurements from confocal and two-photon micros-
copy. There are a wide range of easily applicable tuning
functions, including sigmoids, bilinear, von Mises func-
tions, rectified cosines, and so on (see the supplemental
methods for a full description of the tuning functions and
likelihood models).

Although the methods we present here are flexible in the
choice of tuning functions and noise models, they are generally
much more constrained than nonparametric methods. In addi-
tion to MCMC for nonparametric tuning-curve estimation
(Dimatteo et al. 2001; Kaufman et al. 2005), a large body of
work exists on reverse-correlation approaches. These ap-
proaches aim to directly map stimulus properties to neural
responses (Dayan and Abbott 2001; Eggermont et al. 1983;
Marmarelis and Marmarelis 1978; Ringach et al. 1997b; Si-
moncelli et al. 2004). A wide range of toolboxes support the
analysis of neural data using such nonsampling based methods
(for useful software packages, see: http://chronux.org/ http://
pillowlab.cps.utexas.edu/code.html, http://find.bccn.uni-freiburg.de/).
More recently, techniques have been developed that constrain
reverse-correlation estimates using specific noise models and
priors (Paninski 2004; Sahani and Linden 2003; Smith and
Lewicki 2006). In many ways, these two strategies, nonpara-
metric estimation of response functions with priors and fully
Bayesian parametric estimation of response functions, repre-
sent a continuum of modeling frameworks that extends from
minimally constrained modeling to very constrained mod-
eling. This continuum allows experimentalists to decide
how to model their data depending how much is known
about the neural system or experimental manipulation in
question. For instance, in a system where the exact para-
metric form of a tuning curve is unknown, experimentalists
may want to use nonparametric or semi-parametric models
rather than assuming a poorly fitting fully parameterized
tuning function.

Inference assumptions and prior knowledge

All statistical inference methods, including nonparametric
methods and bootstrapping, require assumptions. For example,
to compute bootstrap estimates that were comparable to the

results of the Bayesian methods, it was necessary to perform
nonlinear least-squares optimization to estimate the parameter
values for each bootstrap sample (Swindale 1998). All optimi-
zation methods make use of an error function; the squared-
error function that is used by this method is equivalent to an
assumption of Gaussian noise in the data. In short, there is no
way to estimate parameter values, or their residual uncertainty,
or to compare different models with respect to their ability to
explain the data without making assumptions. Bayesian meth-
ods generally make all such assumptions explicit.

One specific kind of inferential assumption that bears special
attention is the prior distribution placed on the tuning-curve
parameters. In most cases (including all of those used in the
examples), a noninformative prior such as a uniform distribu-
tion over an appropriate range is sufficient. In this case, the
posterior is equivalent to the likelihood, and one can easily find
the maximum likelihood sample or compute a likelihood ratio
between two models. However, in some cases, such as when
there is very limited data or tuning functions are complicated,
it may be necessary to include a more informative prior on one
or more of the parameters. In these cases, it is incumbent on the
experimenter to justify the use of a prior, such as by appealing
to past measurements, literature, or to biophysical properties of
the neurons under study. While such prior information may be
controversial, we note that Bayesian methods provide the
opportunity—though not the requirement—to introduce such
information in a coherent and statistically principled way.

Extensions to more complex models

The general approach of using MCMC sampling to draw
from the posterior distribution of model parameters can be
applied to models that are more complex than those described
here. These methods have been used previously to infer the
parameter distribution of a model that described the orientation
tuning dynamics of neurons in cat primary visual cortex in
response to oriented reverse-correlation stimuli (Schummers
et al. 2007). Nonparametric approaches to tuning-curve fitting
using MCMC and splines have also been developed (Kaufman
et al. 2005). These analyses use the same principles as those
described here, illustrating that these techniques are applicable
to a wide range of neurophysiological data analysis problems.
We note, however, that more complex models (i.e., models
containing more parameters than those described here) do

FIG. 8. Comparison to the bootstrap. Each panel shows the results of applying the Bayesian methods and the bootstrap to a different simulated data set. In
each case, the simulated data were generated from the true underlying tuning curve (black line); the simulated data points are shown with black dots. The 95%
error margins are shown for both the Bayesian methods (red) and the bootstrap (blue). A: 128 observations total; B: 48 observations total; and C: 16 observations
total. The 2 methods are very similar in performance when large amounts of data are available, but the Bayesian method is better able to recover the true tuning
curve when less data are collected.
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require more care in the selection of inference methods. In
particular, special attention must be paid to the proposal
distribution that is used to generate candidate parameter sam-
ples; additional detail can be found in Schummers et al. (2007).
This study demonstrates that, once an appropriate proposal
distribution has been identified, sampling methods scale quite
well, and can be successfully applied to models with �100
parameters or more.

Many if not most statistical estimation techniques are cur-
rently viewed as approximations to optimal Bayesian infer-
ence. The approach we used here has the benefit that even for
small amounts of data, in the limit of sufficient computer
power (large number of samples), it will provably converge to
the correct answers. These tools should thus be useful for the
general analysis of tuning curves, which is a central statistical
objective in neuroscience.
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