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The frontal eye field (FEF) plays a central role in saccade selection
and execution. Using artificial stimuli, many studies have shown that
the activity of neurons in the FEF is affected by both visually salient
stimuli in a neuron’s receptive field and upcoming saccades in a
certain direction. However, the extent to which visual and motor
information is represented in the FEF in the context of the cluttered
natural scenes we encounter during everyday life has not been ex-
plored. Here, we model the activities of neurons in the FEF, recorded
while monkeys were searching natural scenes, using both visual and
saccade information. We compare the contribution of bottom-up
visual saliency (based on low-level features such as brightness,
orientation, and color) and saccade direction. We find that, while sal-
iency is correlated with the activities of some neurons, this relation-
ship is ultimately driven by activities related to movement. Although
bottom-up visual saliency contributes to the choice of saccade
targets, it does not appear that FEF neurons actively encode the kind
of saliency posited by popular saliency map theories. Instead, our
results emphasize the FEF’s role in the stages of saccade planning
directly related to movement generation.

Keywords: attention, fixation choice, generalized linear models, natural
stimuli, neural data analysis, visuomotor integration

Introduction

One of the most frequent decisions in our lives is where to
look next. How the nervous system makes this decision while
free-viewing or searching for a target in natural scenes is an
ongoing topic of research in computational neuroscience
(Yarbus 1967; Koch and Ullman 1985; Kayser et al. 2006;
Elazary and Itti 2008; Ehinger et al. 2009; Foulsham et al. 2011;
Zhao and Koch 2011). The most prominent models of saccade
target selection during free-viewing are based on the concept
of bottom-up saliency maps. In these models, the image is sep-
arated into several channels including color, light intensity,
and orientation, to create a set of “feature maps” (for a review,
see Koch and Ullman 1985; Treisman 1988; Cave and Wolfe
1990; Schall and Thompson 1999; Itti and Koch 2000, 2001).
For example, the horizontal feature map would have high
values wherever the image has strong horizontal edges. After
normalizing and combining these feature maps, the output indi-
cates locations in an image containing features that are different
from the rest of the image. The more dissimilar an image region
is from the rest of the image the more salient or “surprising” it is
(Itti and Baldi 2006). Saliency models for saccade target-
selection predict that human subjects are more likely to look at

locations that are salient in the sense of being different from the
rest of the image. Models based on these ideas have successfully
described eye-movement behavior in both humans and
monkeys (Einhäuser et al. 2006; Berg et al. 2009; Foulsham et al.
2011). How the brain may implement such algorithms is a
central question in eye-movement research.

The involvement of cerebral cortex in this selection of eye
movements has been recognized since the late 19th century
when David Ferrier reported that eye-movements could be
evoked from several regions of the rhesus monkey’s cerebral
cortex by using electrical stimuli (Ferrier 1875). One of these
regions included an area of cortex now known as the frontal
eye field (FEF). The visual and movement-related response
field properties of different classes of neurons in the FEF have
been carefully characterized using physiological and behavior-
al methods (Bizzi 1968; Bizzi and Schiller 1970; Mohler et al.
1973; Suzuki and Azuma 1977; Schiller et al. 1980; Bruce and
Goldberg 1985; Segraves and Goldberg 1987; Schall 1991; Seg-
raves 1992; Schall and Hanes 1993; Segraves and Park 1993;
Burman and Segraves 1994; Dias et al. 1995; Schall et al. 1995;
Bichot et al. 1996; Sommer and Tehovnik 1997; Dias and
Segraves 1999; Everling and Munoz 2000; Sommer and Wurtz
2001; Sato and Schall 2003; Thompson and Bichot 2005;
Fecteau and Munoz 2006; Serences and Yantis 2006; Ray et al.
2009; Phillips and Segraves 2010). In addition to eye-
movement related activity, FEF firing rates are thought to be af-
fected by simple image features (Peng et al. 2008), by
task-relevant features (Thompson et al. 1996, 1997; Bichot and
Schall 1999; Murthy et al. 2001), and by higher-order cognitive
factors including memory and expectation (Thompson et al.
2005). During the period of fixation between saccades, the
initial visual activity of FEF neurons is not selective for specific
features such as color, shape, or direction of motion (Schall
and Hanes 1993). Later activity, however, is more closely
related to saccade target selection, and appears to be influ-
enced by both the intrinsic, bottom-up saliency of potential
targets as well by their similarity to the target (Murthy et al.
2001; Thompson and Bichot 2005; Thompson et al. 2005).
Several studies have suggested that the pre-saccadic peak of
FEF visual activity specifies the saccade target (Schall and
Hanes 1993; Schall et al. 1995; Bichot and Schall 1999) and
that this visual selection signal is independent of saccade pro-
duction (Thompson et al. 1997; Murthy et al. 2001; Sato et al.
2001; O’Shea et al. 2004). In summary, activity in FEF has been
linked to information about perception, decision making, plan-
ning, and action, increasing the difficulty of identifying a
precise computational role for this area.
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Although it has been suggested that FEF neurons encode a
visual saliency map, the definition for visual saliency in this
context is typically largely subjective, nonuniform across
studies, not always explicitly defined, and based primarily
upon the likelihood that a feature in visual space will become
the target for a saccade (Thompson and Bichot 2005). From a
computational perspective, the prevalent interpretation of sal-
iency in the oculomotor field includes the fundamental visual
features contributing to the objective definition of visual sal-
iency as well as other factors determining saccade target
choice including relevance or similarity to the search target
and the gist—the likelihood that the target will be found at a
particular location (Itti and Koch 2000; Land and Hayhoe
2001; Oliva et al. 2003; Turano et al. 2003). In this study, we
use a precise bottom-up definition of saliency, a definition that
is independent of task objective or gist, based only upon the
basic physical image features. Examining FEF activity in the
light of a formal definition will advance our understanding of
both the process for saccade target choice as well as the role of
the FEF in that process.

It is unclear whether results from earlier studies using artifi-
cial stimuli will hold for natural scenes, and exactly how visual
and motor information are represented in FEF during naturalis-
tic eye movements. To understand how the brain works ulti-
mately implies understanding how it solves the kinds of tasks
encountered during everyday life (Kayser et al. 2004). Follow-
ing that philosophy, multiple communities have begun to
analyze the brain using natural stimuli (Rolls and Tovee 1995;
Willmore et al. 2000; Theunissen et al. 2001; Vinje and Gallant
2002; Wainwright et al. 2002; Smyth et al. 2003; Weliky et al.
2003; Sharpee et al. 2004) and have quantified the statistics of
natural scenes and movements (Olshausen and Field 1996;
Bell and Sejnowski 1997; Van Hateren and van der Schaaf
1998; Schwartz and Simoncelli 2001; Lewicki 2002; Hyvarinen
et al. 2003; Srivastava et al. 2003; Betsch et al. 2004; Smith and
Lewicki 2006; Ingram et al. 2008; Howard et al. 2009). Impor-
tantly, these studies show experimentally that surprising non-
linear aspects of processing become apparent as soon as
natural stimuli are used (Theunissen et al. 2000; Kayser et al.
2003; MacEvoy et al. 2008). For example, input to regions
outside of the classical receptive field during natural scene
viewing increases the selectivity and information transfer of V1
neurons (Vinje and Gallant 2002). It is thus important to
analyze FEF activity using natural stimuli.

Although a complete understanding of the FEF’s role in eye
movement control will depend on the use of natural stimuli,
analyzing neural activities during the search of natural images
is a difficult problem. The main factor contributing to this diffi-
culty is the fact that most variables of interest are correlated
with one another. It is known that monkeys tend to look at
visually salient regions of images (Einhäuser et al. 2006; Berg
et al. 2009). This means that a purely movement-related
neuron would have correlations with bottom-up saliency. In an
extreme example, eye muscle motor neurons responsible for
moving the eyes to the right, would on average have more
activity during times where the right side of the image has
high saliency, and would thus appear to encode high saliency
in the right visual field. We clearly would not want to conclude
that the motor neuron encodes saliency. This emphasizes the
need for a way of dealing with the existing correlations.

To deal with such cases, statistical methods have been devel-
oped that enable “explaining away” (Pearl 1988). In natural

scene search, the correlations are not perfect—the subject may
not always look to the right when the rightward region is
salient. These divergences enable us to identify the relative
contributions of visual and motor activation to neuron spiking.
The basic intuition is the following: For the case of a neuron
that is tuned only to saliency, its activity may also be correlated
with eye movement direction due to the imperfect correlation
of saliency and saccade direction during natural scene search.
Once we subtract the best prediction based on saliency,
however, any correlation with movement would be gone. The
opposite would not be true. If we subtract the best prediction
based on movement, a correlation with saliency would still
exist. Over the past few years, generalized linear models
(GLMs), have proven to be powerful tools for solving such pro-
blems, modeling spike trains when neural activity may depend
on multiple, potentially correlated, variables (Truccolo et al.
2005; Pillow et al. 2008; Saleh et al. 2010).

Here, we recorded from neurons in the FEF while a monkey
searched for a small target embedded in natural scenes. We
then analyzed the spiking activity of these neurons using
GLMs that treat both bottom-up saliency and saccades as
regression variables. Almost all neurons had correlations with
upcoming saccades and most also had correlations with
bottom-up saliency. However, after taking into account the
saccade-related activities, the correlations with saliency were
explained away. These results suggest that conventional,
bottom-up saliency is not actively encoded in the FEF during
natural scene search.

Materials and Methods
The animal surgery, training, and neurophysiological procedures used
in these experiments are identical to those reported in (Phillips and
Segraves 2010). All procedures for training, surgery, and experiments
were approved by Northwestern University’s Animal Care and Use
Committee.

Animals and Surgery
Two female adult rhesus monkeys (Macaca mulatta) were used for
these experiments, identified here as MAS14 and MAS15. Each monkey
received preoperative training followed by an aseptic surgery to
implant a subconjunctival wire search coil for recording eye move-
ments (Robinson 1963; Judge et al. 1980), a Cilux plastic recording
cylinder aimed at the FEF, and a titanium receptacle to allow the head
to be held stationary during behavioral and neuronal recordings. Surgi-
cal anesthesia was induced with the short-acting barbituate thiopental
(5–7 mg/kg IV), and maintained using isoflurane (1.0%–2.5%) inhaled
through an endotracheal tube. The FEF cylinder was centered at stereo-
taxic coordinates anterior 25 mm and lateral 20 mm. The location of
the arcuate sulcus was then visualized through the exposed dura and
the orientation of the cylinder adjusted to allow penetrations that were
roughly parallel to the bank of the arcuate sulcus. Both monkeys had
an initial cylinder placed over the left FEF. Monkey MAS14 later had a
second cylinder place over the right FEF.

Behavioral Paradigms
We used the REX system (Hays et al. 1982) based on a PC computer
running QNX (QNX Software Systems, Ottawa, Ontario, Ca), a real-
time UNIX operating system, for behavioral control and eye position
monitoring. Visual stimuli were generated by a second, independent
graphics process (QNX – Photon) running on the same PC and rear-
projected onto a tangent screen in front of the monkey by a CRT video
projector (Sony VPH-D50, 75 Hz noninterlaced vertical scan rate,
1024 × 768 resolution). The distance between the front of the monkey’s
eye to the screen was 109.22 cm (43 inches).
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Visually Guided and Memory-Guided Delayed Saccade Tasks
Monkeys fixated a central red dot for a period of 500–1000 ms. At the
end of this period, a target stimulus appeared at a peripheral location.
On visually guided trials, the target remained visible for the duration
of the trial. On memory-guided trials, the target disappeared after 350
ms. After the onset of the target, monkeys were required to maintain
central fixation for an additional 700–1000 ms until the central red dot
disappeared, signaling the monkey to make a single saccade to the
target (visually guided) or the location at which the target had ap-
peared (memory-guided). The delay period refers to the period of time
between the target onset and the disappearance of the fixation spot.
These 2 tasks were used to characterize the FEF cells by comparing
neural activity during 4 critical epochs (see Data Analysis section). Ty-
pically, trials of these types were interleaved with each other, and with
the scene search tasks described below.

Scene Search Task
This task was designed to generate large numbers of purposeful, self-
guided, saccades. Monkeys were trained to find a picture of a small fly
embedded in photographs of natural scenes. After monkeys learned
the standard visually guided and memory-guided search tasks, the
target spot was replaced with the image of the fly. After 30 min, the
scene task was introduced. Both monkeys used in this experiment
immediately and successfully sought out the fly. After a few sessions
performing this task, it became obvious that monkeys were finding the
target after only 1 or 2 saccades. We therefore used a standard alpha
blending technique to superimpose the target onto the scene. This
method allows for varying the proportions of the source (target) and
destination (the background scene) for each pixel, and was used to
create a semi-transparent target. Even after extensive training, we
found that the task was reasonably difficult with a 65% transparent
target, requiring the production of multiple saccades while the
monkeys searched for the target. Monkeys began each trial by fixating
a central red dot for 500–1000 ms, then the scene and embedded target
appeared simultaneously with the disappearance of the fixation spot,
allowing monkeys to begin searching immediately. The fly was placed
pseudo randomly such that its appearance in 1 of 8 45° sectors of the
screen was balanced. Within each sector its placement was random
between 3° and 30° of visual angle from the center of the screen. Trials
ended when the monkeys fixated the target for 300 ms, or failed to find
the target within 25 saccades. Images of natural scenes were pseudor-
andomly chosen from a library of >500 images, such that individual
images were repeated only after all images were displayed. An essential
feature of this task is that, although they searched for a predefined
target, the monkeys themselves decided where to look. The location
where the target was placed on the image did not predict the ampli-
tudes and directions of the saccades that would be made while search-
ing for it nor the vector of the final saccade that captured it.

Image Database
The set of images was collected by one of the co-authors (ANP) for the
purpose of conducting the experiment in Phillips and Segraves (2010),
and is available for download. The photographs were taken using a
digital camera, and included scenes with engaging objects such as
animals, people, plants, or food. The images were taken by a human
photographer and thus may contain biases not present in truly natural
visual stimuli (Tseng et al. 2009). For instance, the center of the image
tends to be more salient than the edges (as presented in Results
section, Fig. 2A,B).

Neural Recording
Single neuron activity was recorded using tungsten microelectrodes
(A-M Systems, Inc., Carlsborg, WA, USA). Electrode penetrations were
made through stainless steel guide tubes that just pierced the dura.
Guide tubes were positioned using a Crist grid system (Crist et al. 1988,
Crist Instrument, Co., Hagerstown, MD, USA). Recordings were made
using a single electrode advanced by a hydraulic microdrive
(Narashige Scientific Instrument Lab, Tokyo, Japan). On-line spike dis-
crimination and the generation of pulses marking action potentials
were accomplished using a multichannel spike acquisition system

(Plexon, Inc., Dallas, TX, USA). This system isolated a maximum of 2
neuron waveforms from a single FEF electrode. Pulses marking the
time of isolated spikes were transferred to and stored by the REX
system. During the experiment, a real-time display generated by the
REX system showed the timing of spike pulses in relationship to se-
lected behavioral events.

The location of the FEF was confirmed by our ability to evoke low-
threshold saccades from the recording sites with current intensities of
≤50 μA, and the match of recorded activity to established cell activity
types (Bruce and Goldberg 1985). To stimulate electrically, we gener-
ated 70 ms trains of biphasic pulses, negative first, 0.2 ms width per
pulse phase delivered at a frequency of 330 Hz.

Data Analysis – General Analysis

FEF Cell Characterization
We examined average cell activity during 4 critical epochs while the
monkey performed the memory-guided delayed saccade task to deter-
mine if the cell displayed visual or premotor activity. If not enough
data were available from this task, data from the visually guided
delayed saccade task was used. The baseline epoch was the 200 ms
preceding target onset, the visual epoch was 50–200 ms after target
onset, the delay epoch was the 150 ms preceding the disappearance of
the fixation spot, and the presaccade epoch was the 50 ms preceding
the saccade onset. FEF cells were characterized by comparing epochs
in the following manner using the Wilcoxon sign-rank test. If average
firing rates during the visual or delay epochs was significantly higher
than the baseline rate, the cell was considered to have visual or delay
activity respectively. If the activity during the presaccade epoch was
significantly greater than the delay epoch, the cell was considered to
have premotor activity. These criteria are similar to those used by
Sommer and Wurtz (2000). The selection of neurons for this study was
biased towards those with visual activity and our sample does not
include any neurons with only motor activity.

IK-Saliency
We considered the Itti-Koch (IK)-saliency (Itti and Koch 2000; Walther
and Koch 2006) as the definition of saliency (see Supplementary
Material and Supplementary Fig. S1A). This method provides a bottom-
up definition of saliency based only on basic image features and inde-
pendent of task objectives. We used the publicly available toolbox
(Walther and Koch 2006) for computing IK-saliency with the default
parameter values and considered 3, equally weighted, channels: color,
intensity and orientation. IK-saliency for each image was centered by
subtracting the mean of the IK-saliency of that image. To account for a
possible imprecision of eye position tracking, we low-pass filtered the
IK-saliency using a 5° standard deviation 2D-Gaussian (some examples
are shown in Results section, Fig. 2A). We redid the analysis either
without centering or without low-pass filtering the definition of IK-
saliency and show that the conclusions of this study are the same
(these results are shown in Supplementary Material, Supplementary
Fig. S5).

ROC Curve
To compute the Receiver Operator Characteristic (ROC) curve for IK-
saliency as an eye fixation predictor we considered all the saccades for
both monkeys in the interval between 200 and 2000 ms of each trial.
We varied a threshold across the domain of possible values of IK-
saliency and determined the fraction of fixations that fell on pixels with
IK-saliency above that threshold (y-axis of ROC curve). We compared
this true positive rate across all frames to the fraction of pixels without
fixations that had IK-saliency above the threshold (the false positive
rate). We bootstrapped across the pixels with fixations to obtain a 95%
confidence interval for the area under the ROC curve.

Finally, to test for the predictive value of saliency independent of
center-bias, we compared, using Mann-Whitney test, the IK-saliency at
the fixated locations with the IK-saliency at the same locations in all
other images.
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Peri/Post-Stimulus Time Histograms (PSTHs)
We used PSTHs to examine preferred directions for saccades as well as
sensitivity to visual saliency. For the saccade-related PSTHs, we con-
sidered a time interval of 400 ms centered on saccade onset. We con-
sidered all saccades in the time period of 200 ms after trial start and
until a maximum of 5000 ms into the trial (less if the trial ended before
5000 ms). We assigned the neuron’s activity for each 400 ms perisacca-
dic interval to one of 8 PSTHs according to the saccade direction and
ignoring the magnitude of the saccade. To construct the PSTHs, spikes
were binned in 10 ms windows and averaged across trials.

The PSTHs for activity driven by visual saliency were computed in
an analogous way. Each of our analyses considers the whole distri-
bution of IK-saliency over the scene to characterize neural responses.
We considered a time interval of 400 ms centered on fixation onset.
The spikes were binned in 10 ms windows. Activity for a fixation inter-
val was assigned to a particular direction if, after convolving the IK-
saliency image with one of 8 filter windows that corresponded to each
representative direction relative to eye fixation, the average pixel value
was positive. Unlike the saccade-related PSTHs where each raster was
associated with only one of the 8 representative directions, IK-saliency
for a given image was often elevated in more than one of the 8 filter
windows, and thus each raster in the visual saliency PSTHs could be as-
signed to more than one PSTH. The 8 filter windows were cosine func-
tions of the angle, each with a maximum at the correspondent
representative direction and independent of the distance to fixation
point. These filters were thresholded to be zero at a distance smaller
than 3° or larger than 60°.

Data Analysis – Generative Model, Model Fitting andModel
Comparison
To explicitly model the joint contribution of saliency and saccades we
developed a generative model for FEF spiking using a type of GLM—a
linear–nonlinear-Poisson cascade model. We specify how these mul-
tiple variables can affect neural firing rates and how firing rates trans-
late to observed spikes. We then fit the model to the observed spikes
using maximum likelihood estimation (see below).

Generative Model
We considered a time interval starting 200 ms after trial start and until a
maximum of 5000 ms into the trial. We wanted to examine 3 hypoth-
eses: spike trains in FEF neurons encode 1) saccade-related (motor)
information alone, 2) bottom-up saliency alone, or 3) both motor pro-
cesses and bottom-up saliency. We model spike activity using a Gener-
alized Bilinear Model (Ahrens et al. 2008). We will explain in detail the
jointmodel, that is, the model that considers both saccade and saliency
as covariates—candidate predictors of FEF neuron activity. The
saccade only, saliency only and full-saccademodels are simplifications
of this basic model and will be described after. We start by assuming
that the conditional intensity (instantaneous firing rate), l, of a neuron
at time t is a function of the eye movements sm, visual stimuli, sv, as
well as the time relative to saccade onsets, tm, and time relative to fix-
ation onsets, tv :

lðtjf ; s; t;aÞ ¼ expðaþ f MðtmÞ þ f mðtm; smÞ þ f VðtvÞ
þ f vðtv; svÞÞ: ð1Þ

We assume that there are 2 spatiotemporal receptive fields (STRFs)
f mð�Þ and f vð�Þ for motor (saccade) and for visual (saliency) covariates,
respectively. To account for possible nonspatially tuned responses (e.
g., untuned temporal modulation preceding fixation onset in a saliency
encoding neuron or saccade-locked untuned firing rate change) and
for the fact that saccades do not have a fixed duration (a histogram of
saccade durations is shown in Supplementary Fig. S2B), we also allow
for the possibility of a purely temporal response—independent of di-
rection of saccade or of saliency stimuli—defined by temporal recep-
tive fields (TRFs) at beginning of saccade, f Mð�Þ and at end of saccade/
beginning of fixation, f Vð�Þ We assume that these STRFs and TRFs
combine linearly and, to ensure that the firing rate is positive, the
output of this linear combination is then passed through an

exponential nonlinearity. To simplify, we assume that the STRFs are
space-time separable:

lðtjg;h; s; t;aÞ ¼ expðaþ f MðtmÞ þ gmðtmÞhmðsmÞ þ f VðtvÞ
þ gvðtvÞhvðsvÞÞ ð2Þ

and that both the TRFs and the STRFs are linear in some basis, such
that they can be rewritten as a sum of linear and bilinear forms,

lðtjX;w;b;aÞ ¼ expðaþw`
MXMðtÞ þw`

mXmðtÞbm þw`
VXVðtÞ

þw`
v XvðtÞbvÞ: ð3Þ

The vectors wm and wv define the temporal components of the STRFs,
while bm and bv define the respective spatial components. The par-
ameter a defines the baseline intensity and wm and wv are the par-
ameters for the purely temporal responses centered at saccade and
fixation onset, respectively. These parameters, together with the motor
parameterswm and bm, as well as the saliency parameterswv and bv of
the STRF, fully define the neurons firing rate. Notice that the bilinear
components of the model are not strictly linear in the parameters
unless we consider the temporal components and the spatial com-
ponents separately.

Finally, we assume that the observed spikes are drawn from a
Poisson random variable with this rate:

nspikesðtÞ � Poisson(lðtjX;w;b;aÞ): ð4Þ

Hence if N½t;tþDt½ is the number of spikes during the interval ½t; t þ Dt½,
N½t;tþDt½ ¼ nspikesðt þ DtÞ � nspikesðtÞ

� Poisson
ðtþDt

t
lðtjX;w;b;aÞdt

� �
:

We binned the data in Dt ¼ 10ms intervals and we assume constant
firing rate l½t;tþDt½ within each time bin, hence

N½t;tþDt½ � Poisson(lð½t;tþDt½jX;w;b;aÞDt)

For notational convenience, in the remainder of the Methods t will
denote an index representing the time bin ½t; t þ Dt½, with Dt ¼ 10ms.

Parametrization of the Receptive Fields
The form of the STRFs depends on how we construct Xm and Xv, that
is, how we parameterize the spatial and temporal components of the
saccade and saliency receptive fields. We parameterize the spatial re-
ceptive field for saccades by assuming that the activity of the neuron is
cosine tuned for saccade direction, i.e., its firing rate is a function of
the cosine of the angular difference between the direction of saccade
and some fixed direction, the neuron’s preferred direction (Georgo-
poulos et al. 1982; Hatsopoulos et al. 2007). Specifically, for each time
index t, we define a vector dðtÞ as:

dðtÞ ¼ ½cosðuðtÞÞ sinðuðtÞÞ�` ð5Þ

if a saccade with direction uðtÞ occurred at time index t, otherwise
dðtÞ ¼ 0. For notation convenience, we define a matrix DðtÞ ¼ ½dt;j �,
where dt;j ¼ djðtÞ. This matrix incorporates the spatial component of the
saccade covariates for each of the spatial basis functions for all time
points. Although there is some evidence that FEF neurons may be tuned
to saccade magnitude (Bruce and Goldberg 1985), we focus on direc-
tional tuning here, which appears to be the dominant factor. The con-
struction of XM andXV, which defines the form of the TRFs, is done in an
analogous way by defining vector dðtÞ as 1 (1D) if a saccade occurred at
time index t and 0 otherwise. To model temporal variation near the time
of saccade and fixation onset, we parameterized TRFs with a set of 5 basis
functions. As saccades and fixations are defined by very specific points in
time, we restrict ourselves to finite windows 200 ms before to 300 ms
after saccade or fixation onset. Specifically, our set of temporal basis func-
tions are 5 truncated Gaussians with standard deviation of 50 ms:

fkðtÞ ¼ N ðmk; 50msÞ � 1½�200;300�ðtÞ; ð6Þ
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where 1Að�Þ is the indicator function, and the k ¼ 5 means mk are
equally spaced such that they partition the interval between −200 and
300 ms into 6 subintervals: mk ¼ ½�200þ Dt : Dt : 300� Dt� ms with
Dt ¼ 500=6ms. We incorporate temporal information by convolving
each column of matrix D with each basis function that parameterizes
the TRFs. Finally, we define, for each time index t, the matrix
XmðtÞ ¼ ½xk;jðtÞ�5�2 where

xk;jðtÞ ¼ ðDj
�fkÞðtÞ: ð7Þ

The matrix XMðtÞ is defined in an analogous way and is hence a 5-by-1
matrix.

For the visual/saliency basis we assume a similar model where the
neuron has a preferred direction for the saliency surrounding the eye
fixation position. This model is based on the entire saliency distri-
bution across the scene. The parameterization is analogous to the
saccade spatial receptive field:

dðtÞ¼
X
x;y

x
jxjIKSðx�xfixðtÞ;y�yfixðtÞÞ

X
x;y

y
jyjIKSðx�xfixðtÞ;y�yfixðtÞÞ

" #`

ð8Þ

if a fixation started at time t and dðtÞ¼0 otherwise. IKS denotes the IK-
saliency of the current image and the sum is over all pixel positions
ðx;yÞ in a window centered at the eye position during fixation (see Sup-
plementary Material and the description above and (Itti and Koch
2000; Walther and Koch 2006) for details). Similar to the cosine tuning
to saccade direction used above, this representation provides a direc-
tional tuning to average saliency. We considered the median eye pos-
ition during the fixation period as the value of eye position during the
ith fixation, ðxfixðtÞ;yfixðtÞÞ. The construction of matrices Xv and XV is
then analogous to the construction of Xm and XMðtÞ.

The STRFs for saccades and saliency allow us to model directional
dependence that is then modulated by an envelope around the time of
saccade or fixation onset. Note that the STRFs for saliency and saccades
are allowed to be completely unrelated under this model, and the same
is true for the TRFs, the purely temporal responses around saccade and
fixation onset. The joint model has a total of 25 parameters: a for the
baseline (1), wM and wV for the TRFs (5 + 5), wm and wv for the tem-
poral response of the STRFs (5 + 5) and bm and bv for spatial component
of the STRFs (2 + 2). In addition to the joint model we consider a
saccade-onlymodel (wV ¼ 0,wv ¼ 0, and bv ¼ 0, 13 parameters) and a
saliency-only model (wM ¼ 0, wm ¼ 0, and bm ¼ 0, 13 parameters).
Finally, we consider also the full-saccademodel (wv ¼ 0 and bv ¼ 0, 18
parameters) which can account for saccade duration variability and
some possible temporal representation of the end of the saccade.

Fitting Algorithm
To estimate the parameters a,wM, wm, wm, wV, wv, bm and bv, we use
maximum likelihood estimation and coordinate ascent. By coordinate
ascent, we mean that we alternate between fitting one subset of par-
ameters and another. We do this because the model is linear only
when we consider the temporal and spatial parameters of the bilinear
terms separately. We first fit the baseline, the purely temporal par-
ameters and the temporal parameters of the bilinear terms holding
spatial parameters fixed, which reduces the problem to a GLM:

lðtÞ ¼ expðaþw`
MXMðtÞ þw`

mXm;b̂m
ðtÞ þw`

VXVðtÞ
þw`

v Xv;b̂v
ðtÞÞ ð9Þ

where b̂m and b̂v are fixed parameters for the spatial receptive field
and Xm;b̂m

ðtÞ ¼ XmðtÞb̂m and Xv;b̂v
ðtÞ ¼ XvðtÞb̂v. We then repeat the

procedure and fit the baseline, the purely temporal parameters and the
spatial parameters holding the temporal parameters of the bilinear
terms fixed:

lðtÞ ¼ expðaþw`
MXMðtÞ þ Xm;ŵm ðtÞbm þw`

VXVðtÞ
þ Xv;ŵv ðtÞbvÞ ð10Þ

where ŵm and ŵv are fixed parameters for the temporal response of
the spatially modulated component of the receptive field and
Xm;ŵm ðtÞ ¼ ŵ`

mXmðtÞ and Xv;ŵv ðtÞ ¼ ŵ`
v XvðtÞ.

We alternate between fitting one set of parameters and the other
until the log-likelihood converges. As both likelihood functions are
log-concave it is reasonable to expect that it converges to the optimal
solution (Ahrens et al. 2008), and, in practice, random restarts con-
verge to the same STRF solutions.

Model Comparison
To compare the joint model, the saccade-only, and saliency-only
models, we computed, using 10-fold cross-validation, the pseudo R2

for each model (Heinzl and Mittlböck 2003; Haslinger et al. 2012) and
the relative pseudo R2. Note that we should not use the traditional R2

to quantify the spike prediction accuracy of the model since while that
measure assumes Gaussian noise, the number of spikes is non-negative
and discrete signal. Instead, we use an extension of the traditional R2

measure to Poisson distributions; the pseudo R2. The pseudo R2 can
be interpreted as the relative reduction in deviance due to the
additional covariates a model and is defined as:

R2
DðmodelÞ ¼ 1� log LðnÞ � log Lðl̂ Þ

log LðnÞ � log Lð�nÞ

where log Lðl̂ Þ is the log-likelihood of the model under consideration,
log LðnÞ is the likelihood of the saturated model and log Lð�nÞ is the
likelihood of the homogenous model. The homogeneous model is the
model that assumes a constant firing rate, specifically, the average
firing rate of the training set. The saturated model provides an upper-
bound on prediction accuracy by assuming that the firing rate in a
certain time bin is exactly equal to the observed firing rate in that time
bin.

In order to compare between models 1 and 2, where model 1 is a
model nested in model 2—for example, the saccade-only model is
nested in the joint model—we use the relative pseudo R2 which is
defined analogously:

R2
Dðmodel 2, model 1Þ ¼ 1� log LðnÞ � log Lðl̂2Þ

log LðnÞ � log Lðl̂1Þ

Where log Lðl̂1Þ and log Lðl̂2Þ are the log-likelihood of models 1 and 2,
respectively. The relative pseudo R2 can hence be interpreted as the rela-
tive reduction in deviance due to the extra set of covariates included in
model 2. Note that R2

Dðmodel 1Þ ¼ R2
Dðmodel 1, homogeneous modelÞ.

It is important to recognize that we are not able to obtain unbiased
variance estimates for the pseudo R2 obtained using 10-fold cross-
validation since the correlations due to the overlap of the testing sets
typically leads to underestimating the variance (Bengio and Grandvalet
2004). However, by bootstrapping across the whole population of re-
corded neurons and within each subpopulation of visuomotor and
visual neurons, we can obtain 95% confidence intervals on the average
pseudo R2 for each population and sub-population of neurons.

There are other measures that we could have used such as bits per
spike (Harris et al. 2003; Pillow et al. 2008) which is defined as the log
(base 2) of the likelihood ratio between the model and the baseline
model, divided by the number of spikes. The bits-per-spike measure
gives the reduction in entropy (mutual information) due to the covari-
ates. The pseudo R2 measure that we use is, apart from the different
basis of the logarithm, the bits-per-spike measure normalized by the
amount of bits per spike of the saturated model. Hence, the 2 measures
are closely related. It is important to note that, although the pseudo R2

measure has the advantage of being upper-bounded by 1, this bound
is impossible to achieve in practice unless every spike is perfectly
predicted.

Overfitting
We checked for overfitting for every neuron considering all trials and
for a particular neuron (neuron 4) as a function of the number of trials.
We computed, for the joint model and for that particular neuron, the
pseudo R2 on test data and on training data as a function of the number
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of trials used in the analysis. For each set of trials considered, we ran-
domly partitioned the data into 10 subsets. We fitted STRFs for all com-
binations of 9 subsets (the training set) of this partition and computed
the pseudo R2 on the training set and on the remaining 10% (the test
set). Finally, we computed the mean across 10-folds and obtained an
average of spike prediction accuracy on test data and on training data.
To check for overfitting for all neurons, we repeated the same pro-
cedure for every neuron considering all trials.

Simulations
To verify the ability of the model to dissociate saliency and
saccade-related spiking, we simulated 3 typical kinds of neurons,
saccade only, saliency only, and joint dependence. We used the behav-
ioral data from 1 particular neuron in our dataset to simulate spikes, as-
suming the same STRF for this set of simulations (as presented in
Results section, Fig. 7A), and using smoothed IK-saliency as the defi-
nition of saliency. We assumed that each model had the same saccade/
saliency STRF. This STRF was obtained by fitting the saccade-only
model to the data of a particular neuron (neuron 4). To compute confi-
dence intervals for recovered angle and recovered temporal filter we
split the dataset into a partition of 10 sets of trials with an equal
amount of trials. We computed the pseudo R2 confidence interval
using 10-fold cross-validation.

For the next set of simulations (as presented in Results, Fig. 8) we
used data from a particular neuron (neuron 4) and we fitted the recep-
tive fields using the saccade only model. We then used baseline and
the STRF terms to simulate spike data for a new set of simulated
neurons. We tested how adding Gaussian white noise to the IK-
saliency affected how well we could recover saliency encoding (as
measured by relative pseudo R2 between the joint model and the
saccade only model). We matched the variance of the noise to the var-
iance of the IK-saliency image. Finally, we simulated neurons that lie in
the range between only saccade encoding neurons and neurons that
encode equal amounts of saccade and saliency, and again tested how
well we could recover saliency encoding.

Results

We recorded from single neurons in the FEF of behaving
monkeys while they searched for a small inconspicuous target
embedded in a natural image stimulus (Fig. 1, target not
shown, see Materials and Methods section). Eye movements
where monitored and the monkey was rewarded with water
for successfully finding the target. In the following analysis,
we examine the activity of 52 FEF neurons recorded from 2
rhesus monkeys (MAS14, n = 30; MAS15, n = 22) categorized,
using visual and memory-guided saccade tasks, as visual
(n = 37) or visuomovement (n = 15) neurons; visual neurons
have strong responses after target onset in the receptive field

and visuomovement neurons are visual neurons that also have
strong activity during the presaccade epoch (see Materials and
Methods section—FEF cell characterization). A previous study
examined saccade tuning in these data, ignoring visual infor-
mation (Phillips and Segraves 2010). Here, we analyze how the
activity of the neurons relates to aspects of both saccades and
features of the natural scene stimuli, more specifically to a
bottom-up definition of saliency.

We use the definition of saliency (IK-saliency) developed by
Itti and Koch (2000). The IK-saliency is a traditional, bottom-
up saliency map algorithm that converts images into saliency
maps based upon color, intensity, and orientation on multiple
spatial scales (see (Itti and Koch 2000) Materials and Methods
section and Supplementary Material for details). For each of
the maps, the algorithm computes how different each location
or pixel is from its surround, and the map is then normalized.
This leads to conspicuity maps which are then added together
to define the overall saliency map. Points that are similar to the
rest of the image will have low saliency while, potentially inter-
esting points that are different from the rest of the image have
high saliency (Fig. 2A,B). The resulting saliency map tends to
be highly sparse with most regions of the image being unsur-
prising (Fig. 2A). There is a non-negligible center bias where
the center of the image is more salient than the borders
(Fig. 2B), an effect that is due to human photographers having
a bias in their choice of pointing direction (Tseng et al. 2009).
Saliency maps summarize the high dimensional properties of
an image with a single dimension; the saliency or interesting-
ness of the image as a function of space.

We first wanted to check if, as predicted by previous publi-
cations (Einhäuser et al. 2006; Berg et al. 2009), monkeys look
more often at regions of the image that have high saliency. We
thus plotted the standard ROC curve which quantifies how
well the saccade targets can be predicted from the saliency
map (Fig. 2C). We found the area under the ROC curve to be
0.587 (0.584, 0.590) (median and 95% confidence interval,
bootstrap, see Materials and Methods section for details)—
somewhat lower than in previous monkey free-viewing
saccade experiments but above the chance level of 0.50 (Ein-
häuser et al. 2006). However, in our experiment, the monkey
was not free-viewing the images but had a specific task: it was
searching for an embedded target. This top-down goal likely
makes the saccades less predictable compared with the case
when only bottom-up saliency information is considered. To
test if the predictive values of saliency were only due to the

Figure 1. Behavioral task and data from a typical trial. (A) Monkeys were rewarded for finding the picture of a fly (not shown) embedded in natural scenes. (B) Eye position and
spike trains were recorded for each trial, allowing us to model dependencies between image features, eye movement, and neural responses. Vertical dashed line marks beginning of
fixation of a dot appearing at the center of the tangent screen. Blue vertical line marks the appearance of the image with embedded target. Red and yellow dots mark the beginning
and end of saccades. Saccade endpoints correspond to the beginning of a new period of fixation between saccades.
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center bias, we compared the saliency of image locations
where fixations occurred with the average saliency for that
location for the remainder of the image set. We found that sal-
iency at the fixated locations tends to be higher than at the
same location in the other images (P < 10−10, Mann–Whitney
test), demonstrating that the predictive value of saliency for fix-
ation choice is due to more than just center-bias. Algorithms
that calculate bottom-up saliency predict some aspects of fix-
ation behavior but tend to be somewhat imprecise. When the
task is not a free-viewing task but involves target search the pre-
dictions of bottom-up saliency maps become even more impre-
cise. Regarding attempts to understand how saliency relates to
the activities of FEF neurons, many methods such as post/peri-
stimulus time histograms (PSTH) rely on a well-controlled stimu-
lus or trigger. For those methods, it would be advantageous if
saliency did not predict eye movements. Here, we use a model-
based, multivariate regression approach where saliency and eye
movements are not required to be independent.

Saccade Representation
One of the well-established characteristics of many FEF
neurons is that they are tuned to the direction of upcoming
movements. To quantify this dependence on saccade direction,
and test if it may be affected by search in natural images, we es-
timated each neuron’s spatiotemporal tuning to direction of
movement. The saccade-triggered PSTH for eye-movements to
various octants shows that indeed, some neurons do have sub-
stantial tuning to the direction of saccade (Fig. 3A).

We then used a generalized linear model (GLM, see Sup-
plementary Fig. S1B and Materials and Methods section) to ex-
plicitly model the spatiotemporal tuning to saccade direction
of the neurons. The model used here (space-time separable
STRF with cosine direction dependence) accurately captures
the properties of the example neuron (Fig. 3B), and allows us
to quantify how well-tuned each neuron is to saccades in each
direction (Fig. 3C). Most of the neurons we recorded from
appear to have strong saccade-related modulation, similar to
previous descriptions of neurons in the FEF during simple
visual tasks (e.g., Bruce and Goldberg 1985).

Vision/Saliency Representation
We next wanted to see if the same neurons might also be tuned
for visual saliency. Using fixation-triggered PSTHs divided by

the direction with the highest IK-saliency, we found that,
indeed, some neurons seem to have substantial tuning to direc-
tions in which there are salient stimuli (Fig. 4A, but see
below). Similar to the saccade direction dependence shown
above, we found that a GLM based on tuning to IK-saliency ac-
curately captured the properties of this neuron (Fig. 4B) and
allowed us to quantify how well each neuron was tuned to the
saliency of the stimuli (Fig. 4C). Using this saliency model, it
appears that some of the neurons we recorded from do have
significant tuning for salient stimuli in a particular direction.

Explaining Away Saliency Representation
So far, we have found that some neurons do appear to have
tuning to saccade and also tuning to the direction in which
there are salient stimuli. For most neurons, saccade direction
alone provides a better model of spiking than saliency alone
(Fig. 4D); however, since these 2 variables are correlated, the
independent analyses above may be confounded. We have
shown that monkeys tend to make saccades toward more
salient targets, even during natural scene search. This means
that if FEF neurons encode only saccade movement, their
activity might still be correlated with saliency. Furthermore,
fixation onset times and saccade onset times are also highly
correlated, which may make it difficult to disambiguate the
effects of saccades and saliency on spiking activity.

We thus implemented a GLM that predicts spikes based on
saccade and saliency at the same time. This approach allows us
to take advantage of a statistical effect called explaining away.
If the spikes could be fully described by saliency then the
system would put no weight on saccade and vice versa. As the
saccades and saliency are not perfectly correlated, such a joint
model will determine which of the 2 factors is, statistically, a
more direct explanation of a neuron’s firing.

For essentially all of the recorded neurons, we find that
adding a spatiotemporal saliency receptive field to the saccade
model does not improve the spike prediction accuracy (Fig. 5).
A model that uses only saccade and a model that uses both
saccade and saliency perform almost equally well (Fig. 5A,B,
center panels)—in contrast, considering both saccade and sal-
iency improves the performance relative to considering only
saliency (Fig. 5A,B, left panels). In fact, the apparent saliency
related modulation (Figs 4A,B and 5C, first and second

Figure 2. Saliency maps and saccade prediction. (A) Three typical images from the natural scene search task, along with their IK-saliency maps, and smoothed IK-saliency maps
(filtered with an isotropic Gaussian with a standard deviation of 5°). (B) (top) Average IK-saliency map across all images used in the task along with the average smoothed
IK-saliency. Note that there is a bias towards the center of the image being more salient than the edges. (bottom) Corresponding image histograms. (C) ROC curve for smoothed
IK-saliency as an eye fixation predictor. We considered all the saccades for both monkeys in the interval between 200 and 2000 ms of each trial. Area under the curve (median and
95% confidence interval, boostrap) is shown.
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columns) can be reproduced using motor information only
(Fig. 5C, fourth column). Saccade covariates of the joint model
can capture the trial-by-trial variability better than the saliency
only model which just smears the spiking activity (Fig. 5C,
fourth and third columns, respectively). As saccade duration
has some variability (see Supplementary Fig. S2B), we tested a
GLM that adds a purely temporal response centered at the end

Figure 3. Saccade encoding. (A) Rasters sorted by direction of saccade, centered on
saccade onset and the correspondent peristimulus time histograms (PSTHs) for a
particular neuron (neuron 4). (B) Overlapping colored PSTHs (left), the fitted spatial and
temporal receptive fields (right, insets) and correspondent reproduced PSTHs (right).
Actual PSTHs were constructed using all the trials. Parameters were fitted to randomly
chosen 90% of the trials and fitted PSTHs were constructed using those 90% of
the trials. Blue and purple curves (right, inset) correspond to the temporal gains in
the directions of lower (blue arrow) and higher (purple arrow) modulation of the
spatio-temporal receptive fields (STRFs). (C) Spike prediction quality for each neuron:
Pseudo R2 (±2 SEM, 10-fold cross-validation for each individual neuron; 95%
bootstrap confidence intervals for the averages across the recorded population and
subpopulations) of the saccade encoding model. Neurons previously classified as
visuomovement and visual and respective averages (95% CI, bootstrap across neurons)
are shown in black and grey, respectively (see Materials and Methods section). Global
average (95% CI, bootstrap across neurons) is represented in red. Arrow signals neuron
number 4, the example neuron in panels A and B. The order of the neurons is the order
in which they were recorded across time but grouped by classification.

Figure 4. Saliency encoding. (A) Rasters and post-stimulus time histograms (PSTHs) for
a particular neuron (neuron 42). Data are aligned on fixation onset, and assigned to a
raster/PSTH based upon the directions where IK-saliency was elevated during the fixation
interval (see Materials and Methods section for additional detail and Supplementary
Fig. 3 for the analogous saccade-onset PSTHs for this neuron). (B) Overlapping colored
PSTHs (left), the fitted spatial and temporal receptive fields (right, insets) and
correspondent reproduced PSTHs (right). Actual PSTHs were constructed using all the
trials. Parameters were fitted to randomly chosen 90% of the trials and fitted PSTHs were
constructed using those 90% of the trials. Blue and purple curves (right, inset) correspond
to the temporal gains in the directions of lower (blue arrow) and higher (purple arrow)
modulation of the STRFs. (C) Spike prediction quality for each neuron: Pseudo R2 (±2
SEM, 10-fold cross-validation for each individual neuron; 95% bootstrap confidence
intervals for the averages across the recorded population and subpopulations) for the
vision/saliency encoding model. Neurons previously classified as visuomovement and
visual and respective averages (±2 SEM) are shown in black and grey, respectively (see
Materials and Methods section). Global average (±2 SEM) is represented in red. Arrow
signals neuron 42, the example neuron in panels A and B. The order of the neurons is the
order in which they were recorded across time but grouped by classification. (D) Scatter
plot for spike prediction quality (±2 SEM, 10-fold cross-validation) of saccade model
(same data as Fig. 3C) and saliency (same data as Fig. 4C) for each neuron.
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of the saccade to the saccade-only model: the full-saccade
model. We find that it completely explains the saliency modu-
lation for all neurons (Fig. 5A,B, right panels)—the
saliency-related covariates do not add any predictive power to
the full-saccade model. In other words, when modeling

activities carefully, there is absolutely no sign of bottom-up sal-
iency (Itti and Koch 2000) encoding.

The absence of improvement in spike prediction accuracy
was not caused by the higher number of parameters in the
joint model, since there is minimal overfitting (Fig. 6A,B). Even

Figure 5. Explaining away. (A) Scatter plots of the spike prediction accuracy (±2 SEM, 10-fold cross-validation, see Materials and Methods section) under the saliency-only (left)/
saccade-only (center)/full-saccade (right) and joint models. The saccade-only, saliency-only and full-saccade models are represented on the x-axis and the joint saccade in the
y-axis. “n4” and “n42” denote neurons 4 and 42, the example neurons of Figures 3 and 4, respectively. (B) Relative pseudo R2 between the joint model and the saliency model (left)/
saccade model (center)/full saccade model (right) (±2 SEM, 10-fold cross-validation for each individual neuron; 95% bootstrap confidence intervals for the averages across the
recorded population and subpopulations). Arrows signal neurons 4 and 42, the example neurons of Figures 3 and 4 respectively. Note different y-axis scales for left versus center
and right panels. The order of the neurons is the order in which they were recorded across time but grouped by classification. (C) Actual spikes and PSTHs (1st column) and
predicted firing rates and PSTHs for saliency only model (2nd column), joint model using saliency covariates only (3rd column) and joint model using saccade covariates only (4th
column) for the example neuron of Figure 4 (neuron 42). Parameters were fitted to 50% of the trials and the data shown (both actual spikes and predicted firing rates) correspond to
spikes and covariates of the remaining 50% of data (testing set). Upper panels show raw data and predicted firing rates from 340 fixations of the test set where the IK-saliency in
the lower-left octant area of the image relative to the point of fixation was positive (see Materials and Methods section). Lower panels show PSTHs for all directions.
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though the full-saccade model explains away the saliency
tuning modulation at fixation onset, it does not completely
explain away saccade direction modulation at the end of the
saccade (also see Supplementary Material and Supplementary
Fig. S4). Furthermore, we checked that explaining away is
robust within a considerable range of parameterizations of the
TRFs (Supplementary Fig. S5). Thus, our finding that saliency
is not represented in the FEF is not due to overfitting.

We observed that, for most of the neurons, saliency in-
formation alone allows some prediction of neural activity
(Fig. 4C). In fact, the spatiotemporal terms of the saliency
model add predictive power (as measured by the pseudo R2,
P < 0.05, bootstrap), to a model that considers only the purely
temporal terms centered at fixation onset. However, the modu-
lation related to saliency was explained away by including
saccade information (Fig. 5A,B). The fact that saliency related
tuning is explained away seems surprising, since the relation-
ship between saccades and saliency, although present, is fairly
weak in our natural scene search task (Fig. 2C). Even the ap-
parently large effects in the saliency PSTHs (Fig. 4A,B) and
spike prediction (Figs 4C and 5A) seem to be well explained
based on these correlations (Fig. 5A–C). Part of the directional

tuning may be explained by the fact that the center of images
tends to be more salient than the periphery (Fig. 2B), and
when fixation is at the edge of the image saccades toward the
center become more likely. Furthermore, saccade onset and
fixation onset happen close in time and saccade durations have
some variability (Supplementary Fig. S2B). Neural responses
are driven by a range of different factors. Ignoring some
factors may lead us to draw wrong conclusions, but by model-
ing these factors together we can disambiguate which factors
truly relate to the responses.

Simulations
It could be that we failed to find true saliency responses in FEF
because our data analysis routines did not correctly handle the
correlations between the variables. We thus simulated equival-
ent amounts of data using a range of models: a purely saccade
neuron, a purely saliency neuron and a neuron that encodes
saccade and saliency simultaneously (Fig. 7A, see Materials
and Methods section for details). We then asked if our
methods would be able to recover the spatiotemporal tuning
of these simulated neurons. Using the same GLM approach as
above, we find that we can readily detect tuning to preferred
saccade direction or saliency direction (Fig. 7B,C) and the
spatially and non-spatially dependent temporal responses.
If the neurons in the actual FEF sample were truly tuned to
the definition of saliency we are using, then these simulations
demonstrate that we should have been able to reconstruct this
dependence.

Lastly, it might simply be that our analysis was underpow-
ered and more data would have been necessary to observe
modulations in firing rate due to saliency. To test for this possi-
bility, we simulated neurons using the STRF component of the
fitted receptive field to data of a particular neuron (neuron 4,
Fig. 4B; see Materials and Methods section for details). We de-
graded the signal quality in our simulated neurons in 2 ways:
1) We made the definition of saliency used in the models
worse by adding noise to the IK-saliency definition and 2) We
simulated neurons that were mostly tuned to saccade move-
ment with progressively weaker modulation due to saliency.
We found that even if saliency signals were highly corrupted
(SNR∼ 0.1) the amount of data available here should have
been sufficient to resolve saliency related tuning (Fig. 8A). We
also found that even if the saliency tuning is substantially
smaller than saccade tuning (by a factor of ∼3) these effects
should have been picked up (Fig. 8B). Concretely, we can say
that if IK-saliency had at least 25% influence on the neural
activity of this neuron then we should have had more than 95%
probability of finding it.

Discussion

In this study, we examined the activity of FEF neurons to deter-
mine whether or not they represent bottom-up saliency while a
monkey searches for small targets embedded in natural scenes.
We found that saliency is mildly predictive of eye-movement
direction during natural scene search but it appears not to be a
determinant of FEF activity when other correlated, saccade-
related covariates are properly taken into account. Our finding
that FEF does not appear to represent bottom-up saliency
suggests that the activity of the FEF may be dominated by
top-down target-selection and saccade planning.

Figure 6. Model sensitivity and overfitting analysis. (A) Average of spike prediction
accuracy (±SEM, 10-fold cross-validation) for the joint model on test data and on
training data, as a function of the amount of data used. Total number of trials for this
specific neuron is 328. Dashed vertical lines indicate thresholds for 50% and 90% for
the trials. (B) Over-fitting analysis for the whole population. Error bars in both
dimensions are ±2 SEM.
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Our study has used eye movements during natural scene
viewing to ask if neurons in the FEF represent bottom-up sal-
iency. There are, of course, factors that limit the interpretation
of our results.

Caveat 1: Our definition of saliency may differ from the
actual representation of bottom-up saliency used by the FEF.
We have employed a commonly used definition of bottom-up
saliency (Itti and Koch 2000). Past research has shown that
most definitions of bottom-up saliency lead to saliency maps
that are highly correlated with one another and are often diffi-
cult to disambiguate behaviorally (Borji et al. 2012). This is
because most computational definitions of bottom-up saliency
effectively ask how dissimilar image patches are from the rest
of the image and the specific metric of similarity often has little
influence in such cases (Schölkopf and Smola 2002). There-
fore, it seems unlikely that other definitions of bottom-up sal-
iency would have improved our ability to observe saliency
tuning in FEF neurons.

Caveat 2: Our results show that if bottom-up saliency is rep-
resented in the FEF during natural scene search it is only ex-
plaining a tiny proportion of the overall activity. This does not
imply that there is no representation of bottom-up saliency,
nor does it imply that this proportion would be as small if it
was a free-viewing task; just that our results support a weak
representation. However, given that activity in the FEF is suffi-
ciently strongly dominated by planning, it appears that bottom-
up saliency representation is not a central function of FEF.

Previous research using artificial stimuli has suggested that
significant activity in the FEF is devoted to the representation
of visual saliency, noting that salient objects within the recep-
tive field of an FEF cell may elicit high activity even without a
saccade that actually ends in the receptive field (Thompson
et al. 1996, 1997; Bichot and Schall 1999; Murthy et al. 2001).
However, our results suggest that bottom-up saliency is not
represented in the FEF. Furthermore, other studies using
natural scenes suggest that visual cells do not respond to
stimuli unless their receptive field contains the target of a
future saccade (Burman and Segraves 1994; Phillips and
Segraves 2010). How can this difference be explained? We
suggest a couple of possible explanations for this apparent
contradiction.

First, the eye-movement field has had some difficulty to
adhere to a uniform definition of saliency, and generally in-
cludes a combination of bottom-up and top-down—including
target relevance and the probability of a saccade—factors
within the realm of saliency (but see Melloni et al. 2012).

Figure 8. Statistical power analysis. (A) Relative pseudo R2 between the joint model
and the movement model, (±2 SEM) as a function of the signal-to-noise ratio of the
saliency definition, for a saccade only neuron and for a neuron that encodes saccade
and saliency. (B) Relative pseudo R2 between the joint model and the movement
model (±2 SEM), as a function of the amount of saliency that the neuron encodes
relative to movement.

Figure 7. Simulations. (A) Simulated spatial and temporal filters for the 3 different
kinds of neurons: purely saccade, purely saliency, and both saccade and saliency
encoding. We used a fixed temporal filter (triggered on saccade onset for saccade
responses and on fixation onset for saliency responses) and a fixed preferred direction
(represented by the circles with shades of gray—preferred direction corresponds to
the lighter shades). Blue and purple curves correspond to the temporal gains in the
directions of lower (blue arrow) and higher (purple arrow) modulation of the
spatio-temporal receptive fields (STRFs). We simulated spikes using behavioral data
corresponding to 1 neuron of our dataset. (B) Recovered temporal filters (shaded area
interval corresponds to ±2 SEM) and preferred directions (±2 SEM, 10-fold
cross-validation. Black dashed line in error bar plot corresponds to the simulated/true
preferred direction: direction of lighter shades of gray signaled by the purple arrow in
Panel A) for saccade and for saliency using the joint model for each of the simulated
neurons of Panel A. (C) Cross-validated (±2 SEM, 10-fold) pseudo R2 for each of the 4
models (saccade only, saliency only, full-saccade and joint model) for each of the 3
simulated neurons (saccade only, saliency only, and both saccade and saliency).

3242 Saliency and Saccade Encoding in the FEF • Fernandes et al.

 at U
niversity of C

onnecticut on N
ovem

ber 10, 2014
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/


This ambiguity makes it difficult to directly relate bottom-up
saliency to activity in the FEF.

Second, we expect activity to be much higher for non-
targets in a search task where the number of distractors is
small (see McPeek and Keller 2002). Given the small number
of targets and the exceptionally high levels of saliency used in
typical experiments, results may not generalize to search in
natural scenes. Furthermore, it may be that highly salient
stimuli trigger implicit planning of saccades that is later
aborted, and hence, that the activity of a visual cell represents
the amount of covert attention allocated to that location. Future
work should directly compare the responses of FEF neurons to
the traditional artificial salient stimuli and to more natural
stimuli.

There are many computational definitions of the top-down
factors that are likely to be represented in the FEF. The oculo-
motor system takes into account what the task-relevant target
looks like (the relevance) (Serre et al. 2007) and the likely
locations of the target given the scene context (the gist) (Tor-
ralba et al. 2006; Vogel and Schiele 2007). Several studies have
shown that most of search is driven by task-demands (Yarbus
1967) and that it can override sensory-driven (bottom-up) sal-
iency almost entirely (Einhäuser et al. 2008). In our task the
monkey was not free-viewing but searching for an embedded
target. Looking for representations of these top-down influ-
ences is possible with the methods presented here and would
be an exciting topic for future research.

If bottom-up saliency is not represented in the FEF but it is
important for the selection of saccades, it should be rep-
resented somewhere else. A model of a processing stream for
visual saliency suggests a succession of stages in the visual-
motor pathway from V1 to extrastriate visual cortex and on to
areas LIP and FEF (Soltani and Koch 2010). A recent imaging
study has suggested that V1 represents bottom-up saliency
while FEF is involved with target enhancement (Melloni et al.
2012). There have been reports supporting the existence of
visual saliency maps in V4 (Mazer and Gallant 2003; Burrows
and Moore 2009; Zhou and Desimone 2011), LIP (Gottlieb
et al. 1998; Constantinidis and Steinmetz 2005; Arcizet et al.
2011), and FEF (Schall and Thompson 1999; Thompson and
Bichot 2005; Wardak et al. 2010). A true bottom-up saliency
map must represent the conspicuity of stimuli in the visual
field, independent of the individual stimulus features them-
selves. However, given our results about the subtle ways by
which apparent saliency tuning may arise, it seems fair to state
that the question of if and where the brain represents saliency
has not yet received a sufficient answer. It is not clear where in
the visuomotor system relevance/target-matching is computed,
but this study provides a counter-point to the hyper-salient
tasks used in artificial experiments.

The approach taken here provides a template for how mul-
tiple factors that simultaneously might affect neural responses
can be analyzed. Specifically, our analysis attempts to define
what it means to say that the FEF encodes saliency when other
correlated variables, such as saccade planning, may also be
encoded by the same neurons. Here we used a precise defi-
nition of bottom-up saliency from the computational literature
to quantify the extent to which FEF neurons represent bottom-
up visual saliency during natural scene search. We found that it
is not strongly represented. Instead, saccade planning and
execution dominate the neural responses. This emphasizes the
role of the FEF as a premotor structure, where neural activity

encodes information about the importance of various spatial
locations as potential saccade targets, independent of the
visual properties of those locations.
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Supplementary material can be found at: http://www.cercor.oxford-
journals.org/.
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