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Inferring functional connections between neurons
Ian H Stevenson1, James M Rebesco1, Lee E Miller1,2 and
Konrad P Körding1,3
A central question in neuroscience is how interactions between

neurons give rise to behavior. In many electrophysiological

experiments, the activity of a set of neurons is recorded while

sensory stimuli or movement tasks are varied. Tools that aim to

reveal underlying interactions between neurons from such data

can be extremely useful. Traditionally, neuroscientists have

studied these interactions using purely descriptive statistics

(cross-correlograms or joint peri-stimulus time histograms).

However, the interpretation of such data is often difficult,

particularly as the number of recorded neurons grows. Recent

research suggests that model-based, maximum likelihood

methods can improve these analyses. In addition to estimating

neural interactions, application of these techniques has

improved decoding of external variables, created novel

interpretations of existing electrophysiological data, and may

provide new insight into how the brain represents information.
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The problem of inferring functional
connectivity
At a high level, one of the objectives of neuroscience

research is to understand how the components of large,

complex networks interact. We want to understand how

different areas of the brain interact, how groups of

neurons within these areas interact, how individual

neurons in local circuits interact, and, of course, how

all of these interactions relate to the external world.

Although these interactions occur on different spatial

and temporal scales, in many ways, they reflect a common

underlying question: Given recordings of some elements

in a network (e.g. groups of neurons, individual neurons,
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or protein expression), how do we infer and interpret

interactions among elements? In the past few decades a

number of theoretical and experimental advances have

allowed neuroscientists to begin to answer this question

for a wide variety of signals ranging from fMRI and PET

imaging to simultaneous recordings of many single

neurons [1–3,4�,5]. In this review we focus on the ideas

underlying new techniques for the inference of functional

connectivity from spike data.

It has long been known that neurons, even when they are

far apart in the brain, often do not fire independently from

each other but exhibit correlated firing patterns [6].

Dependencies between the firing patterns of observed

neurons may be due to a number of different reasons. (1)

The neurons may interact monosynaptically or polysy-

naptically. (2) They may encode similar properties of the

environment or planned movements. (3) They may

receive common drive from other, unobserved neurons

in the nervous system. Algorithms that infer functional

connectivity analyze the dependencies among firing pat-

terns and strive to infer how these factors give rise to those

dependencies.

For several decades, neurophysiologists have used cor-

relations between neurons to characterize their inter-

actions [3,4�,7,8]. Early methods focused on analyzing

pairs of neurons using cross-correlograms [6] or joint

peri-stimulus time histograms [9]. These methods have

become staples of neural data analysis, and have

revealed a great deal about the interactions between

cortical and subcortical structures [10] and the local

interactions in visual [11,12] and auditory cortices

[13,14]. These techniques can sometimes reveal the

signature of a synaptic connection but provide no well

defined way of distinguishing between the kinds of

interactions discussed above. Recent developments in

model-based, maximum likelihood approaches promise

to improve the estimation of connectivity [15,16]. Here

we review the statistical principles behind these

approaches, some recent applications, and several open

questions in neuroscience that these approaches may be

able to address.

Explaining away
Before describing specific models it is helpful to under-

stand how model-based methods address some of the

statistical problems that exist with estimating functional

connectivity. Consider a situation with three observed

neurons (A–C), where A excites B and B excites C
neurons, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.11.005
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Figure 1

Two simulations of explaining away. In the first case (a), although cross-correlations indicate that there may be an interaction between A and C (gold

box in panel (b)), it is explained away in model-based estimates of functional connectivity (c). In the second case (d), cross-correlations suggest that

there may be a weak interaction between B and C (gold box in panel (e)), but this interaction is explained away by the fact that both neurons receive

input from A (f).
(Figure 1a). In this situation there will be strong corre-

lations between the activities of all pairs of neurons.

However, it is not immediately obvious from the corre-

lations that the interaction between A and C is mediated

completely by B—the cross-correlations seem to suggest a

weak interaction between A and C (Figure 1b). Intui-

tively, if we could somehow control for the influence of B

we would find that there is no interaction between A and

C (see [17,18], for instance). That is, the interaction

between A and C should be explained away when we

consider the influence of both A and B on C. Model-based

methods do exactly this by explicitly modeling all

possible connections and fitting the parameters all at

once. Figure 1c shows the estimated interactions for this

example.

Now consider a second case where neuron A projects to

both neurons B and C, and, again, all neurons are

observed (Figure 1d). Here, B and C both receive input

from A that tends to confound our estimate of the

interaction between B and C. Using cross-correlations
Please cite this article in press as: Stevenson IH, et al. Inferring functional connections between
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alone it is difficult for us to determine whether B and C

are interacting [19]. Again, model-based methods, by

considering all possible interactions at once, allow the

correlation between neuron B and C to be explained

away by their shared interactions with neuron A

(Figure 1f).

While these examples are idealized, they show that

correlations between pairs of neurons, in isolation, gener-

ally provide an incomplete description of the interactions

among observed neurons. In effect, cross-correlation

methods describe the probability that a neuron spikes

given the recent activity of another neuron. What we

often want to describe is the probability that a neuron fires

given the recent history of all observed variables, in-

cluding (but not limited to) the activities of other neurons.

Explaining away is a powerful feature of model-based

methods. By explicitly modeling all observed variables,

many of the potential interactions are discovered to be

side-effects of more direct interactions during model

fitting.
neurons, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.11.005
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Unobserved common input
When variables in the network are not observed the

situation becomes more complicated. For instance, if

neuron A in Figure 1d is not observed, we probably would

infer an interaction between neurons B and C. Such

unobserved common input generally confounds connec-

tivity estimates. In the motor cortex, for instance, move-

ment induces strong input correlations between many

neurons. Fortunately, by including movement-related

variables in the model, our estimates of functional con-

nectivity may be improved.

Given this caveat, what does it mean for two neurons to be

‘functionally connected’? One helpful way of thinking

about this problem was introduced by Aertsen et al. [20].

They note that it is impossible to uniquely determine the

‘true’ connectivity of a network without recording from all

elements. Unobserved elements in the network can

always confound connectivity estimates [21]. What we

infer is, at best, an approximate description of the net-

work. Given a model and the neurons we observe, the

functional connectivity is a reconstruction of the pair-wise

connections that best reproduces the data. How well the

inferred functional connectivity matches the anatomical

connectivity is an issue of future research. Some emerging

techniques combine anatomical knowledge with neural

signals to further improve inferred functional connec-

tivity [22]. However, even when functional connectivity

does not match actual, anatomical connectivity, the

results can be useful. The inferred functional connec-

tivity summarizes the statistical relationships governing

the interactions between neurons.

Model-based approaches
One of the central ideas in model-based approaches is the

idea of a generative model [23]. It is assumed that the

observed signals are caused or generated by one or more

(potentially hidden) processes. In the case of neurons, it is

typically assumed that the firing of each neuron is influ-

enced by the recent activity of some external variables

(stimuli or movement), the neuron’s own recent activity,

and the recent activity of other observed neurons [24�,25].

These influences are assumed to be statistical, for

example, when a neuron fires it may increase or decrease

the probability of another neuron’s firing. These influ-

ences are characterized by parameters such as connection

strengths and tuning curve properties. To infer functional

connectivity with a model-based approach the parameters

of the model are fit so that the probability of the measured

neural signals is as high as possible given the parameter

values (maximum likelihood) [26]. Within the framework

of model-based analysis, different assumptions can be

incorporated about the way that observable signals are

generated. For instance, spike trains are often modeled as

generalized linear models (GLMs) [27,28]. We will go

through these underlying assumptions of this particular

model in detail.
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The GLM assumes the generative model outlined in

Figure 2. It is assumed that the neuron’s propensity to

fire, called conditional intensity [29], is affected by three

factors: the neuron’s own recent spiking, the recent

spiking of other recorded neurons, and correlated inputs

from unobserved populations of neurons that encode

external covariates (e.g. stimuli or movement) in some

fashion. Using these factors, there are parameters to

capture refractory and other intrinsic effects, functional

connections with other neurons, and receptive fields or

tuning curves (such as the cosine tuning curve in

Figure 2). The conditional intensity function is calculated

as the sum of the three, linearly filtered, factors passed

through a static nonlinearity. Each spike is then randomly

drawn according to a Poisson distribution with this rate,

and the final output ends up being distributed according

to a Cox process [29]. A number of recent studies have

used this GLM idea [16,30��,31��], and there are a num-

ber of algorithms that rapidly optimize the parameters of

such GLMs [16,32,33].

These methods have been used to analyze results from a

range of recent experiments. They have been used to ask

how retinal ganglion cells interact [31��], and to analyze

cultures of neurons in vitro [34]. These two cases are of

particular importance, since the anatomy of the retina is

well known, and the connections in in vitro preparations

can potentially be imaged. In both the retina and cultures

of neurons there is a strong relationship between the

spatial layout of the network and the measured functional

connectivity. Figure 3 shows an example, from Pillow

et al. [31��], of the type of results the GLM produces.

Model fitting provides estimates of stimulus effects,

refractory effects, and the interactions between neurons.

Figure 3 shows estimates for a typical ON retinal ganglion

cell (a) and a typical OFF retinal ganglion cell (b). The

right sections of Figure 3a and b show the spatial and

temporal organization of the input onto the modeled cell.

The modeled cell (shaded black in the mosaics) receives

positive input from neighboring cells of the same type

(gain > 1) and negative input from neighboring cells of

the opposite type (gain < 1). The two mosaics (ON and

OFF) overlap, but are shown separately here for clarity.

Although interactions with non-neighboring neurons

(unshaded in the mosaics) are considered during model

fitting, they are explained away by the more direct con-

nections between neighbors. This figure demonstrates

that the known anatomical properties of the retina are

readily reproduced by GLM-based functional connec-

tivity algorithms.

In other cases it is more difficult to observe anatomical

connections between individual neurons. GLMs have

been used to describe how populations of hippocampal

place cells interact [16], and to analyze the properties of

neurons in motor cortex [30��]. Such analysis is particu-

larly interesting as it promises to improve brain machine
neurons, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.11.005
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Figure 2

The generalized linear model. For each neuron the instantaneous firing rate may depend on external covariates (the direction of hand movement, for

instance), the neuron’s recent spike history, and the recent spike history of other recorded neurons. These variables are linearly filtered by tuning

curves, refractory effects, and functional connections, and the firing rate is modeled as the sum of these effects passed through a static nonlinearity

(e.g. an exponential). We can fit the parameters of the model (tuning curves, refractory effects, and functional connections) by comparing the predicted

spiking to the actual spikes.
interfaces. In brain machine interface applications the

objective is to decode the neural signals and estimate the

external covariates. When decoding from neural activi-

ties, neurons are typically treated as independent given

the external covariates. However, generally neurons are

not independent. Functional connections introduce cor-

relations in the noise structure of these populations and

can, thus, degrade the performance of decoding tech-

niques. Functional connectivity methods explicitly

model the influence of neurons on one another; by

allowing the spurious interactions between neurons to

be explained away these methods promise to improve

decoding. Indeed, recent research has shown that model-

ing the interactions between neurons can often signifi-

cantly improve decoding of an external variable

[30��,31��,35]. Figure 3c, for example, shows the perform-

ance of the GLM, as well as several other models, in
Please cite this article in press as: Stevenson IH, et al. Inferring functional connections between
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decoding visual stimuli presented to a population of

retinal ganglion cells. Functional connectivity techniques

thus are useful beyond simply estimating the way neurons

influence each other.

Beyond the basic GLM: basis functions and
priors
Several variations and extensions of the basic GLM have

been proposed [34–39], and a number of alternative

methods have been developed for modeling multi-neuron

spike-train data and inferring functional connectivity

[15,40–43,44�,45–48]. One of the biggest issues that sev-

eral lines of research have attempted to address, is that

maximum likelihood methods, by themselves, often over-

fit the data [31��,34,37]. By virtue of the fact that these

models may contain a large number of parameters, they

often describe the original spikes very accurately but fail
neurons, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.11.005
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Figure 3

Results from Pillow et al. [31��]. The GLM fitted to an example ON retinal ganglion cell (a) and an example OFF retinal ganglion cell (b). Each fit contains

a stimulus filter (both temporal and spatial components), refractory effects, and interactions (functional connections) with other neurons. The ON and

OFF mosaics (panels (a) and (b), upper right) show the spatial organization of the interactions; the modeled cell is shaded in black. Note that the

functional connections have a strong spatial organization—cells receive positive input from neighboring cells of the same type (red lines in (a), blue

lines in (b)) and negative input from neighboring cells of the opposite type (blue lines in (a), red lines in (b)). The two mosaics (ON and OFF) overlap, but

are shown separately for clarity. (c) Shows the decoding accuracy for the population using a linear model, a Poisson model (no refractory effects or

functional connections), an uncoupled GLM (no functional connections), and the full GLM. Adapted by permission from Macmillan Publishers Ltd:

Nature, copyright (2008).
to generalize well to new sets of spikes. This is generally a

problem when many parameters are inferred from a

limited set of data. For example, if we record from 100

neurons there are 10 000 possible connections between

neurons and, therefore, at least 10 000 parameters that

need to be estimated. The number of free parameters can

easily be larger than the number of recorded spikes per

neuron—making overfitting a central issue.

There are two common ways to reduce such overfitting.

Some approaches reduce the number of parameters by

assuming that interactions can be described by a specific

function or a small number of basis functions [30��,31��].
For example, instead of fitting 360 parameters for each

degree of a directional tuning curve, we can assume that

the neuron is cosine tuned and fit one or two parameters.

Alternatively, we can incorporate prior knowledge about

the nature of the inference problem using Bayes’ rule and

calculate maximum a posteriori estimates rather than

maximum likelihood estimates [26]. For instance, the

number of free parameters can be reduced using the

assumption of sparse connectivity [31��,34,36,37,49] or

by assuming that interaction kernels are smooth [37,50].

Prior beliefs have the effect of nonparametrically redu-

cing the effective number of model parameters. These

two methods, parameterization and priors, allow estimat-

ing functional connectivity from fewer spikes and
Please cite this article in press as: Stevenson IH, et al. Inferring functional connections between
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promise to make the inference of functional connectivity

possible for large numbers of recorded neurons.

Discussion
Inference of functional connectivity is a central technique

for the analysis of data for imaging signals [51–54] as well

as EEG/MEG data [55] Advanced techniques have been

developed that take into account the statistical properties

of the signals (such as hemodynamics) [56�,57] as well as

structural constraints between different brain areas

[58,59]. In many ways, these techniques are similar to

the techniques we discussed above. Explaining away

plays an important role, and unobserved common input

is a potential confound. Given the wide use of these

techniques for analyzing imaging and electrogram data, it

is surprising that similar techniques are not yet in wide

use for the analysis of spike data. One reason for the late

adoption may be that the statistical properties of spikes

(point processes) are somewhat more complicated to

formulate statistically. However, we hope that future

progress in functional connectivity analysis for spike data

may interface productively with results in the imaging

and electrogram literature. Analysis of spike data may

benefit from the detailed anatomical results from com-

mon imaging methods, and analysis of imaging data may

be validated by results from spike data that have much

higher temporal resolution.
neurons, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.11.005

Current Opinion in Neurobiology 2008, 18:1–7

http://dx.doi.org/10.1016/j.conb.2008.11.005


6 Motor systems

CONEUR-625; NO OF PAGES 7
Many basic ideas about connectivity remain to be tested

and for the moment some caution should be used in

interpreting results from these methods. In cases such as

in the hippocampus and in motor cortex it is not yet

clear to what extent functional connectivity inferred

from spikes mirrors anatomical connectivity or how well

functional connectivity generalizes from one task to the

next. To what extent is functional connectivity a real

property of the nervous system instead of a statistical

property of the algorithm and the task? Although there

are still many questions that need to be asked about the

methods, these approaches certainly promise to be

useful as they allow us to ask how neurons interact, a

central question in neuroscience. They will allow us to

ask a whole range of further questions in the future.

How much do higher-order interactions and common

input matter? How do functional connections evolve

over time, during adaptation, learning, sleep, or aging?

How do local functional connections differ across brain

regions? And can we use electrical stimulation or drugs

to change connectivity?

Lastly, it is important to mention that functional connec-

tivity techniques should be combined with other

approaches to brain science. Anatomical connections

set constraints that rule out certain functional connec-

tions. Synaptic physiology rules out certain interaction

kernels. Ultimately algorithms for the inference of func-

tional connectivity should draw on advances in all these

areas to improve the resulting estimates.
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