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Fig. 8. Adaptive filtering for actual data. For this analysis, we combined neurons from all 4 datasets (C, F, K, and R) and use only the significantly tuned neurons
(n = 201). Only 12% (n = 24) of these neurons showed some degree of fluctuation. A: trial-by-trial PD changes estimated by adaptive filtering for the subset
of neurons that appeared to be fluctuating. Note that 177 of the 201 neurons were better fit by a stable rather than a dynamic tuning curve. B: estimated fluctuation
as a function of the modulation for the subset of fluctuating neurons (black) and simulated, stable neurons (gray). The fluctuations revealed by adaptive filtering

are consistent with false positives.

The fact that these estimates are close to the RMS error
observed when estimating fluctuations in simulated data sug-
gests that some care is needed in interpreting these values. The
fluctuations found by adaptive filtering did improve spike
prediction. The average log-likelihood ratio for the dynamic
tuning model was 8.66 * 1.6 bits/trial, relative to a homoge-
nous Poisson process, whereas the average log-likelihood ratio
for the static tuning model was 8.56 = 1.6 bits/trial, relative to
a homogenous Poisson process (both on training data). How-
ever, with any finite amount of data, adaptive filtering methods
can find small false-positive fluctuations even for simulated,
stable neurons.

We examined whether the observed fluctuations may have
been false positives by again simulating stable cosine-tuned
neurons of varying modulation depth. In this case, after apply-
ing adaptive filtering, ~4-5% of the stable neurons are mis-
takenly identified as fluctuating. With the use of these false
positives, we constructed a null distribution and compared this
distribution with the subset of observed fluctuating neurons
(Fig. 8B). The fluctuations observed in 12% of the recorded
neurons are consistent with the results from stable neurons,
suggesting that they may indeed be false positives. The null
results suggest that for typical physiologically realistic tuning
curve parameters, fluctuations have to be rather large before
they are detectable by adaptive filtering (~5°/trial).

DISCUSSION

We have presented results from two approaches aimed at
detecting fluctuations in the PDs of cosine-tuned neurons in
MI1. With the use of bootstrapping on simulations of stable
neurons, we have quantified how measurement uncertainty or
confidence interval size is affected by modulation depth and
the amount of data available. In real data, bootstrapping allows
us to estimate changes between blocks of trials and test for
significance in a way that directly captures the measurement
uncertainty. Finally, we used adaptive filtering techniques to
model trial-by-trial changes in PD explicitly. After comparing
the results with those from simulated, stable neurons, we find
no evidence for large fluctuations in PD using either bootstrap-
ping or adaptive filtering. Small fluctuations in PD may exist,
but detecting these changes is difficult in the presence of
spiking noise.

When examining the properties of neural discharge, the
experimental manipulations, as well as the statistical ap-
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proaches used for analysis, will influence the interpretation of
the results. In this report, we have demonstrated that the
uncertainty related to estimates of PD is directly related to the
total number of spikes, as well as the neuron’s modulation
depth over different reach directions. The greater the modula-
tion depth and the more data available (number of spikes), the
more certain one can be about the tuning of an individual
neuron. For typical experiments with limited amounts of data, the
uncertainty about PD can be quite large compared with the typical
effects of a manipulation—both on the order of a few tens of
degrees. Measurement noise is thus of central importance when
estimating how tuning curves change over time.

With the use of bootstrapping, we can determine confidence
intervals for each of the tuning curve parameters. For the
observed neurons, the confidence intervals for PD were rather
large—16.3° over 120 trials on average. This value fundamen-
tally limits how well we can detect changes in PD. For
instance, the SD of changes in PD between blocks of 120 trials
was 22.9 * 3.2°—the same order of magnitude as the confi-
dence interval. Comparing these changes with those from
stable, simulated neurons with matched tuning curves and
using a corrected measure, we find that the SD of changes is
likely closer to 1.8 = 2.5° over 120 trials. Adaptive filtering
estimates PD changes in a small subset of neurons on the order
of 2.1°/trial, but after comparing these results with stable,
simulated neurons, we find that these changes are again con-
sistent with stable PDs.

A previous study using large blocks of data reported similar
stability of tuning parameters (Chestek et al. 2007). However,
this study used free-reaching rather than a manipulandum and
analyzed neurons primarily from the dorsal premotor cortex
(PMd), leading the authors to speculate that the differences
between their results and those of Rokni et al. (2007) could be
due to experimental design or the specific population of neu-
rons. The experiments presented here are far closer in design to
those by Rokni et al. (2007), and yet, we find no significant PD
changes after corrections for measurement noise. Several stud-
ies have examined the stability of neural activity in the context
of brain-machine interfaces and observe that firing properties
may be highly variable (Carmena et al. 2005) or relatively
stable (Ganguly and Carmena 2009) depending on training.
However, interpreting these results can be difficult, since it is
often unclear how a given decoding scheme relates to the
tuning properties of individual neurons. Variability in the
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decoded behavior tends to be much higher than during normal
reaching, and brain-control itself may introduce certain con-
straints on movement coding.

As a practical matter in data analysis, anything that is not
part of the model but affects neural signals is considered noise.
We considered only Poisson noise, which is compatible with
the Fano factor, typically observed in cortical recordings (Ste-
vens and Zador 1998; Zacksenhouse et al. 2007). However,
there are many other factors beyond the monkey’s hand direc-
tion that potentially influence firing rates (Johnson et al. 2001),
including other kinematic variables such as reach speed
(Chestek et al. 2007) and limb posture (Caminiti et al. 1990;
Scott and Kalaska 1997), as well as added loads (Kalaska et al.
1989), cortical waves (Rubino et al. 2006), neuromodulator
concentrations (Ahern et al. 2002), oxygen concentration (Ji-
ang and Haddad 1994), and circadian rhythms (Barnes et al.
1977). Modeling these other sources of variability, whether
they are observed (Paninski et al. 2003; Saleh et al. 2010;
Truccolo et al. 2005; Wu and Hatsopoulos 2006) or unob-
served (Kulkarni and Paninski 2007; Stevenson et al. 2010)
would likely improve the estimates of PD stability. These
uncontrolled sources of variability could inflate estimates of
both real fluctuations and measurement uncertainty, and the
results here thus provide only an upper bound for the instability
of PDs of neurons in M1. If other sources of measurement
noise could be accounted for, the estimated changes in PD may
very well be even smaller.

Whereas our results suggest that PDs are substantially more
stable during normal reaching than some previous reports,
there is also convincing evidence that the relationship between
a given neuron’s activity and hand direction does change over
time. Tuning to hand direction changes on very short time-
scales due to changing kinematics and dynamics (Churchland
and Shenoy 2007; Hatsopoulos et al. 2004; Sergio et al. 2005),
as well as over longer timescales during sensorimotor learning
(Jarosiewicz et al. 2008; Li et al. 2001; Paz and Vaadia 2004).
While several studies have shown that tuning curves are
sensitive to the measurement epoch and specific task con-
straints (Hamel-Paquet et al. 2006; Sergio et al. 2005), here, we
focused on a fixed, specific portion of the reaches (100 ms prior
to, through 300 ms after movement onset). This type of
analysis ignores the short-timescale kinematics and dynamics
of reaching and is aimed to test whether tuning curves are
stable on longer timescales during a well-learned task. Addi-
tionally, we have focused primarily on the stability and uncer-
tainty in estimates of PD. Both the modulation and baseline
firing rate of cosine-tuned neurons may show a higher degree
of instability (Chestek et al. 2007).

The stability of neuronal properties is of central importance
to many computational theories. If presynaptic neurons change
rapidly, then the motor system must either be redundant to the
extent that fluctuations do not affect behavior (Rokni et al.
2007), or postsynaptic neurons must adapt to allow for stable
movement and decisionmaking. Many behavioral models (e.g.,
Cheng and Sabes 2007; Wei and Koérding 2009) have sug-
gested that learning is an ongoing process, where errors are
constantly being corrected, even during apparently stable be-
havior. This might suggest that the fluctuations in tuning, if
they exist, may actually be functional. Rather than being an
artifact of redundancy in the cortical representation of move-
ment, fluctuations may be a reflection of ongoing attempts to

correct small-reaching errors. While measurement noise makes
it difficult to distinguish between these hypotheses, methods
are being developed to isolate the effects of reach errors (Chase
et al. 2010; Scheidt et al. 2000) and better understand redun-
dancy in the motor system (Jarosiewicz et al. 2008). Statistical
techniques that allow modeling of nonstationary data (Kim et
al. 2006; Wu and Hatsopoulos 2008), as well as experimental
techniques that allow for longer-term recordings (Dickey et al.
2009; Tolias et al. 2007), should both serve to reveal the
more-detailed structure of tuning curve dynamics during learn-
ing as well as stable reaching.
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