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sway induces rigid optic flow, nonrigid random-dot motion
has the advantage that dot density does not depend on
velocity and is constant across velocity conditions. This
ensures that dot velocity, rather than dot density, is the
primary visual cue. In the sections that follow, we refer to
the 10 velocity conditions in screen units (s.u.), which refer
to the radial velocity of the dots at an eccentricity of 0 deg
(£5, 10, 20, 40, or 80 deg/s). Swing room studies often
report stimulus speed in terms of simulated movement in
depth rather than radial velocities. For comparison, the
radial velocities used here correspond to simulated move-
ment in depth of £0.32, 0.65, 1.3, 2.5, and 4.8 cm/s at the
edge of the annulus (eccentricity of 12 deg). Note, however,
that, since the movement is nonrigid, corresponding move-
ment in depth was not constant across the visual field.

We used two uncertainty conditions: 100% coherence,
where the dots were not perturbed at all, and 50%
coherence, where each dot was manipulated by perturbing
the radial position of the dot in each frame with Gaussian
noise. In the later case, the noise for each dot and frame
was drawn from a Gaussian with a standard deviation of
50% of the normal, unperturbed movement. In the 80 deg/s,
50% coherence condition, for example, each dot moves
7.4 pixels per frame £3.7 pixels radially.

Assessing visual flow field uncertainty

In the first part of the experiment, subjects were seated
in front of the projection screen, with the fixation cross
centered at eye level. In a two-alternative forced-choice
(2AFC) task, subjects were sequentially presented with
two flow fields with the same coherence and slightly
different speeds and asked to indicate using a keyboard
which field was faster, in terms of absolute speed. Each
field was presented as an 800-ms-long motion pulse, and a
zero-velocity random-dot flow field was presented
between the two stimuli for 200 ms to prevent direct
comparison of the fields. This mask consisted of a zero-
velocity random-dot field (5-frame lifetime for each dot)
and gives the impression of dots randomly appearing and
disappearing, without any sensation of optic flow. Follow-
ing the presentation of the two stimuli, only the fixation
cross was shown until subjects responded to report that
either the first or second field was faster.

On each trial, the reference random-dot flow field was
randomly selected from one of ten velocities (£5, 10, 20,
40, or 80 deg/s at an eccentricity of 0 deg) and was
displayed randomly either first or second. Subjects
performed 100 trials for each reference field, and the
velocity of the test flow field was chosen using optimal
experimental design methods (Paninski, 2005). After the
first 10 trials, in which the test stimuli were fixed at +50%
of the reference velocity, the next test velocity was chosen
to maximize the conditional mutual information between
the responses and the parameter for the just noticeable
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depth difference (JND) given the test velocity. This
allowed us to efficiently estimate the JND for each
reference velocity and coherence level with relatively
few trials. We fitted psychometric functions using an error
function (cumulative Gaussian) with fixed mean and
assume that there are no lapses in decision making
(Whiteley & Sahani, 2008).

Postural responses to random-dot flow fields

In the second part of the experiment, subjects were
asked to passively stand in front of the projection screen
on a force plate (Nintendo Wii, Balance Board) that was
used to measure their center of pressure (COP, Figure 1A).
Subjects were instructed to stand comfortably with their
feet approximately shoulder width apart, with their arms
comfortably at their sides. The projection was moved so
that the fixation cross was again centered at eye level.
Visual stimuli were the same random-dot flow fields used
in the 2AFC task, except instead of sequential presenta-
tion followed by a response, subjects were continuously
presented with flow fields of varying velocities in
pseudorandom order (Figure 3A). Each test stimulus
(named motion pulse) was presented for 1.6 s, followed by
a rest period lasting randomly between 2.4 and 3.2 s. During
this rest period, a random-dot flow field with 0 velocity
was displayed. Each of the test stimuli (10 velocities x
2 coherence levels) was presented 30 times resulting in a
total of 600 repetitions of motion pulses.

Subjects’ COP excursion was recorded continuously
at 75 Hz. Since the flow fields were designed to give the
impression of optic flow either toward or away from
the subject, we are primarily interested in sway along the
anterior—posterior axis. For data analysis, the COP data
were post-processed by low-pass filtering with a 4th-order
Butterworth filter with a cutoff frequency of 10 Hz to
remove the measurement noise. To evaluate the postural
response, we first aligned individual trials to the stimulus
onset and this initial value of COP served as a baseline COP
for that trial. Then the integral of COP deviation from the
baseline was calculated for each trial and each condition.
This alignment and integration of COP captures the effect
of the motion pulses and removes most of the low-
frequency drift of COP. There are some trials where the
COP excursion exhibits excessively large deviation from
normal excursions, possibly due to subjects’ adjustment of
their upper body posture during data acquisition. These
trials were identified and removed from further analysis if
the COP trajectories fell outside of the median +15 x std of
all COP trajectories for that condition. This resulted in 0.1%
to 1.1% of trials excluded for different subjects. Before
combining COP measures across subjects, the values from
individual subjects were normalized by their own range as
inter-subject variance is large due to individual differences
in physical properties such as body size.
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Figure 1. Experimental setup for measuring postural responses to visual stimuli and a schematic of the 2AFC discrimination task. (A) The
subject stands on a force plate centered 0.6 m in front of a backprojection screen, on which random-dot flow fields are displayed. The flow
field moves toward or away from the subject transiently to elicit anterior—posterior postural sway. (B). During the 2AFC task, two flow field
motion pulses are presented with a visual mask in between. Subjects are required to judge whether the second stimulus is faster than the

first.

Model

Here we are primarily interested in understanding how
subjects integrate visual information from the random-dot
flow field with nonvisual (such as proprioceptive and
vestibular) cues. We use deviations in the center of
pressure as a measure of this perceptual cue combination,
and the 2AFC task provides uncertainty measurements for
the visual cues. Under the standard optimal cue combina-
tion model, cues are combined linearly with weights
proportional to their relative precision. Assuming that
cues are independent and the prior is noninformative, we
say that the probability distribution for the combined,
visual-nonvisual estimate of posture is given by

1
P (] yiss Ynonvis) = Zp(xb’vis)p (Xb’nonvis)

1

= ZN(:uvis’ c7ViS)N(:unonvi37 Gnonvis)a (1)

where x is the combined postural estimate, y,;s describes
the magnitude of the visual cue, and ynonvis describes
magnitude of the nonvisual cue. We assume that both the
visual and nonvisual cues have Gaussian noise about
them. N(u, o) denotes a normal distribution with mean u

and standard deviation o, and the partition function, Z,
ensures that the distribution integrates to 1. We assume
that the mean of the visual estimate ps is given by the
stimulus, with uncertainty o;s from the 2AFC task. For
passive standing, the nonvisual estimate is assumed to
have mean 0, and oponvis IS @ free parameter for the
uncertainty of the nonvisual cues. The combined estimate
of the subject’s posture is then given by

o2

)2: nonvis . 2

O_ﬁonvis"— \Z/is His ( )
This 2AFC-calibrated cue combination model has two
free parameters: the uncertainty of the nonvisual cues
Ononvis and a linear scaling factor that maps perceptual
postural estimates X to the observed postural responses.
The uncertainty about the visual cues is completely
determined by a Weber’s law fit to the JNDs estimated
during the 2AFC task.

Note that we deliberately avoid describing posture in
terms of COP position or velocity. Although a number of
studies frame this cue combination problem as a linear
feedback control problem where the visual information
acts via a multiplicative gain on postural position or
velocity, we are primarily interested in the effect of
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Figure 3. Postural sway data from a typical subject in the 100% coherence condition. (A) A segment of continuous postural data is shown.
The upper panel displays the velocity of the radial flow field as a function of time. The lower panel shows the corresponding COP
excursion in the anterior—posterior direction. (B) The anterior—posterior COP excursion from the same typical subject for different velocity
conditions. Individual trials are aligned to the moment of stimulus onset. The bold lines are the averages across trials in one condition and
the shaded regions denote SEM across trials. The COP first moves in the same direction as the motion pulse about 1 s after its onset and
then returns to the baseline in about 3 s. Comparing across panels, postural sway exhibits a tendency to first increase and then decrease

with larger flow field velocity.

COP sequence is triggered to stimulus onset and averaged,
the effect of motion pulses becomes clear (Figure 3B).
After stimulus onset, the COP starts to move in the
direction of visual stimuli. After the motion pulse is
turned off, the deviation of COP continues to increase to
its maximum and then returns to baseline at about 2-3 s
after the motion pulse stimulus is turned off. From the
selected velocity conditions, we can also observe that the
deviation of COP increases when the flow field velocity
increases from 5 to £20 s.u. and then decreases as the
velocity further increases toward +80 s.u. These results
from a typical subject suggest that the flow field display
successfully induced postural sway and that the postural
response is a function of flow field velocity.

We can observe systematic effects of flow fields on
postural sway (Figure 4, solid). The shape of postural
responses as a function of flow field velocity is similar for
both coherence conditions: postural sway increases when
flow field speed increases from +5 to about £20 to +40 s.u.
and then starts to decline. Comparing flow fields moving
in opposite directions, it appears that postural sway
saturates later when flow fields appear to move toward
the subject. Pooling the two coherence conditions
together, we compared different velocity conditions. None
of the adjacent conditions exhibits a significant difference
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Figure 4. The integral of COP excursion as a function of velocity
and coherence of the visual flow fields, as well as the correspond-
ing cue combination model fits. Error bars denote averages and
SEMs across subjects. Dash lines denote the model fits.
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An alternative explanation for the nonlinearity of
vection is that the nervous system may perform a more
sophisticated type of integration. Several studies have
proposed models where the nervous system first deter-
mines whether a given cue is relevant and then ignores or
reduces the influence of irrelevant or outlying information
(Dokka et al., 2010; Wei & Kording, 2009). Under these
causal inference or outlier detection models, very rapid
visual stimuli are interpreted as movements of the
surrounding environment rather than by-products of
changes in posture. Whereas the cue combination model
used here combines visual and nonvisual cues based on
their relative uncertainty, these models weight the cues
according to their uncertainty as well as their cause: large
stimuli are more likely to come from the environment and
thus less relevant for estimating posture. This structured
probabilistic account is certainly applicable for the non-
linear effects found in previous studies where visual
uncertainty does not vary across stimuli or changes very
little. On the other hand, our findings suggest that in
situations where uncertainty varies substantially across
stimuli, Weber’s law may suffice to explain nonlinear
behavioral responses.

Our study instead employs flow fields to measure
the uncertainty associated with different visual speeds
and focuses on testing whether visual uncertainty can bring
similar nonlinear postural response. One advantage of our
cue combination model is its simplicity: it can explain
the same nonlinear effect with less model parameters.
Admittedly, outlier detection models might be applicable
if the amplitude of visual stimuli increases to the point
where cognitive processes to judge whether visual stimuli
are relevant for postural estimation become necessary.
Nevertheless, we argue that for the slow visual speeds in
the current study, simple cue combination with Weber’s
law suffices to explain the nonlinearity in postural sway.

In contrast to previous studies, here we presented visual
stimuli as motion pulses in random-dot flow fields that
transiently perturbed the standing posture. The majority of
studies in swinging room paradigm used continuous
oscillating, structured scenes to drive postural sway (e.g.,
Asten et al., 1988; Dijkstra et al., 1994; Dokka et al., 2009;
Keshner et al.,, 2004; Lee & Aronson, 1974; Mergner
et al., 2005; Ohmi, 1996; Peterka, 2002; Peterka &
Benolken, 1995; Soechting & Berthoz, 1979; van der Kooij
etal., 2001). As we are primarily interested in the influence
of visual uncertainty on postural sway, we used motion
pulses to greatly simplify the task and analyses: we can
focus on the average effect of visual stimuli instead of full,
time-dependent responses. Furthermore, using random-dot
flow fields enables us to readily manipulate visual
uncertainty by varying the coherence level and to critically
test the cue combination hypothesis. Employing motion
pulses also makes our investigation more similar to the
real-life situation where sudden visual perturbations are
frequently encountered.
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Our model focuses on the magnitude of the movement
of the body and ignores its specific temporal profile.
Models that include dynamics and control of the body
(Kuo, 2005; van der Kooij et al., 2001) have been shown
to be excellent at describing the time course of movement
in similar situations. Our estimation model based Weber’s
law could be readily combined with these models.
However, for modeling time-varying sway, it may also
be important to incorporate the relevant time scales of
different senses (Morasso et al., 1999). Since we are
primarily interested in how visual uncertainty modulates
postural sway, we simplified the problem by putting all
nonvisual cues into a single category and focused on
average effect of amplitude.

The linear relationship between visual uncertainty and
speed that we find here differs from a previous report of a
constant uncertainty over speeds (Stocker & Simoncelli,
2006). However, this previous study used horizontally
drifting gratings whereas the present study used expand-
ing/contracting random-dot flow fields. These differences
suggest that the uncertainty associated with speed percep-
tion depends on the direction of visual stimuli, and also,
potentially on the format of the display. Our results
indicate that visual perception of speed in radial flow
fields follows Weber’s law.

Previous motor control studies of standing posture have
also found indirect evidence for more visual uncertainty
being associated with faster speeds. In these studies,
oscillatory visual stimuli were used to induce postural
sway and were superimposed on top of translational visual
stimuli (Jeka et al., 2006; Ravaioli, Oie, Kiemel, Chiari, &
Jeka, 2005). The translational velocity of the visual
stimuli has been reported to induce more postural
variability (Ravaioli et al., 2005). Furthermore, increasing
translational speed appears to produce smaller postural
responses (Jeka et al., 2006). These authors proposed that
there is more noise in visual stimuli associated with higher
translational speeds. However, these findings are not
direct tests of visual uncertainty. Furthermore, these
studies presented translational (and superimposed) visual
stimuli in medial-lateral direction, the direction in which
a constant visual uncertainty over speeds was found in
psychophysics (Stocker & Simoncelli, 2006). The present
study employed standard psychophysics tests to measure
the visual uncertainty in the radial flow fields and
confirmed that uncertainty of visual stimuli increases with
faster velocities.

The asymmetric postural responses for stimuli that
appear to move away vs. toward subjects are consistent
with previous findings that expansion of optic flow usually
evokes larger neural responses than contraction (Gilmore,
Hou, Pettet, & Norcia, 2007; Holliday & Meese, 2005;
Ptito et al., 2001). Interestingly, we also find an
asymmetry in visual uncertainty from the psychophysical
tests. Higher visual uncertainty is associated with expand-
ing flow fields, which leads to less postural sway. This
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