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Bayesian statistics defines how new information, given by a likelihood, should be combined with previously acquired information, given
by a prior distribution. Many experiments have shown that humans make use of such priors in cognitive, perceptual, and motor tasks, but
where do priors come from? As people never experience the same situation twice, they can only construct priors by generalizing from
similar past experiences. Here we examine the generalization of priors over stochastic visuomotor perturbations in reaching experi-
ments. In particular, we look into how the first two moments of the prior—the mean and variance (uncertainty)— generalize. We find
that uncertainty appears to generalize differently from the mean of the prior, and an interesting asymmetry arises when the mean and the
uncertainty are manipulated simultaneously.
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Introduction
In many sensorimotor tasks, people make use of prior informa-
tion that allows perception and movement to be more accurate
(Körding and Wolpert, 2004, Tassinari et al., 2006). In Bayesian
statistics the prior reflects information accumulated from previ-
ous experience, which is then combined with incoming sensory
feedback (the likelihood). As we interact with the world, we learn
about its statistics (e.g., means and variances) and incorporate
this information into our priors. However, since we are never in
the same situation twice, we must use past information from
different but similar situations to derive the right prior beliefs for
a specific task (Shepard, 1987). Only by generalizing from past
situations to our current one can we calculate what to expect.

In asking how humans generalize priors it is essential to un-
derstand how we represent uncertainty. There are a number of
models of how the nervous system might represent uncertainty
(Vilares and Kording, 2011). However, there is limited experi-
mental evidence to constrain these models. Electrophysiological
experiments have probed how single neurons represent
movement-related variables (Georgopoulos et al., 1992; Moran
and Schwartz, 1999), but little is known about the representation
of uncertainty in sensorimotor tasks (Cisek and Kalaska, 2005;
Rickert et al., 2009). Furthermore, to our knowledge, none of the

theoretical models for neural representations of uncertainty
makes any predictions for the generalization of priors.

One way of characterizing the generalization of priors comes
from previous generalization experiments in motor control
(Shadmehr, 2004). During center-out reaching, training with a
rotational perturbation (the imposed prior) in one learning di-
rection biases movements to nearby targets, and this bias de-
creases with increasing distance from the learning direction
(Krakauer et al., 2000). Previous studies showed that uncertainty
has little effects on this generalization pattern (Fernandes et al.,
2012). However, how uncertainty itself generalizes is unknown.

Here, we studied the generalization of prior uncertainty by
imposing a noisy visuomotor rotation (the prior) during center-
out reaching movements in one direction (learning direction),
and manipulating the mean and variance of this rotation. After
learning, we examined subjects’ movements in other directions
and measured subjects’ uncertainty by probing their reliance on
feedback (the likelihood). This paradigm allows us to assess how
subjects adapt to the average visuomotor perturbation (prior
mean), how subjects adapt to variability in the visuomotor per-
turbation (prior uncertainty), and how they generalize these
quantities to new targets (prior generalization). In a first experi-
ment we manipulated the variance without changing the mean.
As observed with the mean in standard rotational generalization,
we found a strong local effect where subjects’ prior uncertainty
peaks in the learning direction, i.e., subjects had a more complete
generalization of the variance of the perturbation in movements
close to the learning direction. However, unlike the mean, we
found a global effect in the generalization of uncertainty. In sub-
sequent experiments we manipulated the variance while intro-
ducing a nonzero mean perturbation and observed interesting
nonlinear interactions between mean and variance–subjects had
the highest prior uncertainty not in the learning direction but in
a neighboring direction.

Received Sept. 10, 2013; revised July 16, 2014; accepted July 18, 2014.
Author contributions: H.L.F., I.H.S., and K.P.K. designed research; H.L.F. and I.V. performed research; H.L.F., I.H.S.,

I.V., and K.P.K. analyzed data; H.L.F., I.H.S., I.V., and K.P.K. wrote the paper.
H.L.F. was supported by Fundação para a Ciência e Tecnologia SFRH/BD/33525/2008. This work was supported by

National Institutes of Health 1R01NS063399 and 2P01NS044393. We thank Daniel Acuna, Max Berniker, and Ben
Walker for helpful discussions.

The authors declare not competing financial interests.
Correspondence should be addressed to Hugo L. Fernandes, Rehabilitation Institute of Chicago, Northwestern

University, 345 East Superior Street, Attention: Kording Lab Room 1479, Chicago, IL 60611. E-mail:
hugoguh@gmail.com.

DOI:10.1523/JNEUROSCI.3882-13.2014
Copyright © 2014 the authors 0270-6474/14/3411470-15$15.00/0

11470 • The Journal of Neuroscience, August 20, 2014 • 34(34):11470 –11484



Materials and Methods
Ethics statement. The study and all experimental protocols were approved
by the Northwestern University Institutional Review Board and are in
accordance with the Northwestern University Institutional Review
Board’s policy statement on the use of human subjects in experiments.
Written informed consent was obtained from all participants.

Experimental protocol: general. Forty-eight right-handed, healthy sub-
jects (17 male, 31 female; aged 28.2 � 3.6 years) participated in the
experiments; n � 32 in Experiment 1 and n � 8 in each of Experiments 2
and 3. All were naive to the purpose of the experiments, and were paid
according to their performance. Subjects made center-out reaches in a
150 � 150 mm workspace. They controlled the position of a cursor with
their right index finger, which was recorded using an Optotrak 3D Inves-
tigator Motion Capture System. A projector and mirror system was cal-
ibrated such that visual feedback was perceived as being in the movement
plane (Fig. 1A; Fernandes et al., 2012), and the subject’s view of his hand
was blocked by the mirror.

The task was designed to measure how subjects generalize a learned
variance (and the learned mean) of a noisy visuomotor rotation, that is,
how the uncertainty related to a perturbation learned during movements
into one direction (the learning direction) affects subsequent move-
ments into other directions (the generalizing directions). The experi-
ments combined two previously existing paradigms: one that allows
measurement of generalization of the mean of perturbations (Krakauer
et al., 2000; Fernandes et al., 2012) and another that allows measurement
of how uncertain subjects are of a perturbation (the learned variance;
Körding and Wolpert, 2004).

Subjects were instructed to make reaches to targets in certain direc-
tions (either the learning direction or a generalizing direction). Their task
was to move the cursor, which they could control with their right index
finger position, and make it reach the target. However, the position of the
cursor was generally hidden and a visuomotor rotation (the perturba-
tion) was imposed on the cursor (Figs. 1, 2A, 4A, 8B). When subjects were
moving in the learning target direction, they were given endpoint feed-
back about the true cursor position, and were eventually able to correct
endpoint errors in the learning direction, either by learning the mean of
the perturbation (if there was a nonzero mean) or by learning the vari-
ance of the perturbation and how to use the midpoint feedback informa-
tion (the likelihood, see below) to correct their movements. Afterward,
they were instructed to make movements into other directions (the gen-
eralizing directions) to measure the generalization patterns of the learned
mean (if there was a mean to adapt to) and of the learned variance of the
perturbation. Generalization patterns were assessed by analyzing how
subjects combine their previous knowledge about the distribution of
perturbations (the prior) with the feedback that they receive midway
through the movement (the likelihood) about the current true position
of the hidden cursor (Körding and Wolpert, 2004). The ideal way to
combine these two sources of information is to combine the means of the
prior and likelihood, weighted by their relative precision (the inverse of
the variance). Assuming that subjects combine this information opti-
mally we can measure their relative uncertainty by computing the slope
of a linear regression of the negative of final hand position (subjects’
estimated perturbation) as a function of the perturbation (see Eqs.1 and
2; Figure 2B). Analogously we are able to simultaneously measure the
mean of the prior (see Eq. 3).

To probe uncertainty, we displayed noisy midpoint feedback (the like-
lihood), which consisted of five red circles identical to the cursor flashed
midway through each trial reach. The position of these dots is sampled
from an isotropic 2D Normal distribution centered on the true position
of the cursor with variance �5.1 mm (chosen empirically to avoid com-
plete reliance on either prior or likelihood, see below). Hence, they give
uncertain information about the true position of the cursor. The mid-
point feedback is shown already during the Familiarization sub-block.
This way subjects get a better idea of how the dots relate to the position of
the cursor. We use the final hand position to measure the level of uncer-
tainty that the subject has on the hidden cursor position.

The intuition for Bayesian integration is that, if subjects are very cer-
tain about where the hidden cursor is, they will only weakly adjust their

reach following the noisy midpoint feedback. If, however, they are very
uncertain about the position of the hidden cursor (for example, because
the perturbation applied to it has high variance), then they will tend to
make large adjustments following midpoint feedback display to correct
their reach accordingly.

Using the nomenclature of the Bayesian framework, the perturbation
(the visuomotor perturbation applied to the cursor) is sampled from a
distribution with defined mean and variance. Throughout the experi-
ment subjects learn the distribution of perturbations, and this learned
distribution corresponds to their prior (note that this distribution is not
necessarily the same as the distribution of imposed perturbations). The
midway flashing dots that give uncertain information about the true
position of the red cursor correspond to the likelihood and the subjects’
estimated perturbation in a particular trial corresponds to the mean of
the posterior. By looking at the slope of the negative of the final hand
position (the proxy for subjects’ estimated perturbation, see below, Data
analysis) as a linear function of the perturbation (Fig. 2B), we can esti-
mate the relative reliance on prior information—relative to midpoint
feedback information (Körding and Wolpert, 2004). Hence we can com-
pute a relative measure of subjects’ learned and generalized uncertainty.

The learning direction was randomly sampled from one of four diag-
onal directions and generalization was measured in seven directions dis-
played at 180, �90, �45, and �25° degrees from the learning direction.
In the experiment, subjects control the position of a red circle, the cursor
(�3 mm radius), with their right index finger. Except for the first famil-
iarization trials the position of the cursor is hidden. Subjects were in-
structed to make radial reaches from a central blue circle, the starting
circle (�6 mm radius), to one of eight yellow circles, the targets (�6 mm
radius). Targets were all displayed at a distance of 72 mm from the central
blue circle; 300 ms after positioning the cursor over the blue circle, the
cursor disappeared, one of the eight targets appeared, and subjects had to
reach it. On some of the trials (see below) the final position of the cursor
was displayed for 500 ms (endpoint feedback). If the reach was successful,
that is, if the center of the red cursor was inside the target, then the target
turned white and subjects were rewarded by having a point added to their
score. If a successful reach happened in those trials where no information
was provided about the success of the reach (no endpoint feedback), then
a point was added to a hidden score. To begin the next trial, subjects had
to reposition the cursor in the starting blue circle. Except for the famil-
iarization trials where the cursor was always visible, the nonrotated cur-
sor was visible only within a distance of 10 mm from the center of the
starting blue circle and disappeared as soon as the trial started, i.e., when
the red cursor was inside the central blue circle. Since some subjects
occasionally have difficulty finding their way back to the starting blue
circle, 4 s after the previous trial was over the nonrotated cursor flashed
every second for 50 ms to allow subjects to find the starting position.

The study consisted of Experiments 1, 2, and 3. The experiments differ
mainly in that the mean of the imposed perturbations is zero in Experi-
ment 1 and nonzero (�30°) in the remaining experiments. Experiments
2 and 3 differ in the way the mean is introduced: in Experiment 2 the
mean is �30° right from the start of each Learning sub-block, while in
Experiment 3 the mean is introduced progressively during the first
Learning sub-block.

Experiment 1: generalization of uncertainty under zero mean rotation
The goal of Experiment 1 is to measure the generalization pattern of
uncertainty. The experiment begins with an initial Familiarization block
(40 trials, five movements to each target) where the cursor is always
visible. No rotation was imposed during the Familiarization block. After
that, the experiment is divided into two blocks of 720 trials, one for each
level of variability (SD: 4° or 12°). The two blocks differ only in level of
variance and their order is pseudorandomized across subjects, so that
half of the subjects started with the small prior uncertainty (SD: 4°) and
the other half of the subjects started with the high prior uncertainty block
(SD: 12°).

Each block of 720 trials consists of a Learning and a Testing sub-block.
The learning direction is the same for both blocks, but selected randomly
for each subject from four possible directions—�45 and �135°. The
maximum time to complete each trial is 4 s and there is a minimum time
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of 400 ms to complete the second half of the reach. If any of these times is
violated the trial is restarted. The minimum time threshold is to guaran-
tee that subjects have enough time to integrate the midpoint feedback
information.

Learning. Subjects complete 240 trials of movements toward a single
learning target direction with midpoint feedback (the cloud of circles
flashed midway through the movement) and endpoint feedback (the
final position of the cursor is displayed). During each trial, the cursor is
hidden and rotated relative to hand position. The rotations applied
within each block are sampled from the same normal distribution with
mean 0° and SD pseudorandomly chosen to be either 4° or 12°.

Testing uncertainty. The Testing Uncertainty sub-block (480 trials) is
composed by sequences of four trials. To prevent forgetting of the per-
turbation, the first two trials of these sequences are toward the learning
direction and the other two trials are toward any two of the eight possible
directions. Targets are chosen pseudorandomly so that exactly 20 reaches
are made toward each generalizing direction (Fig. 2A). Endpoint feed-
back is provided only in trials toward the learning direction and mid-
point feedback is provided in all directions.

Experiments 2 and 3: generalization of uncertainty under nonzero
mean rotation
Experiment 2. Experiment 2 is aimed at measuring the generalization
pattern of mean and variance when both are perturbed simultaneously.
The purpose of Experiment 2 is to see how changing the mean of a
perturbation influences the generalization of uncertainty. Hence, the
difference between Experiments 1 and 2 is essentially that in Experiment
2 the perturbations have a nonzero mean, specifically a mean rotation of
�30°. The experiment starts with a Familiarization block (40 trials) just
like the one in Experiment 1, and it is then divided into two blocks of 880
trials. Just like Experiment 1, in Experiment 2 the two main blocks differ
in the magnitude of the SD of the applied perturbation— 4° or 12° de-
grees. The reason for the larger number of trials is that there is an extra
sub-block between the Learning (240 trials) and the Testing Uncertainty
(480 trials) sub-blocks—the Testing Mean sub-block (160 trials).

Testing mean. The Testing Mean sub-block is for measuring the gen-
eralization of the mean (160 trials). This sub-block allows us to measure
directly how each subject generalized the mean of the perturbation (Fig.
5C,D). Subjects make reaches toward all targets. Endpoint feedback and
midpoint feedback are provided only in the learning direction trials. To
prevent de-adaptation to the perturbation, the learning target direction is
revisited at least twice every four trials; every sequence of four trials is
composed of two reaches toward the learning target direction and two
reaches toward any two of the eight targets. Targets are chosen pseudo-
randomly so that there are in total 10 reaches toward each of the gener-
alizing directions. Even though midpoint feedback is not displayed in
movements toward the generalizing directions, there is still a minimum
amount of time to complete the second part of the movement in every
trial. Hence, subjects still slow down halfway through the movement as in
the trials where midpoint feedback is displayed.

We can then use these measurements of the generalization of the mean
during the Testing Uncertainty sub-block; in each target direction, the
perturbation will have a mean equal to how much the subject generalized
the learned mean to that direction (as measured in the Testing Mean
sub-block; Fig. 5C,D). For example, if subjects did not generalize the
learned mean at all in a particular direction then the mean of the imposed
perturbation in that direction (during the Testing Uncertainty sub-
block) will be zero degrees. Notice that, even though there is no endpoint
feedback during Testing Uncertainty, if the mean perturbation does not
match the subject’s generalized mean then the midpoint feedback could
perturb the subject’s learned mean and uncertainty, and consequently
the measurement of generalization of uncertainty. Hence, by matching
the mean of the probing perturbation in each of the generalizing direc-
tions with the generalized mean, we minimize the possibility of subjects
learning from the midpoint feedback information (see description of the
experimental design below for further details regarding this issue).

Experiment 3. Experiment 3 aims at understanding how behavior
changes when the average of the imposed distribution of perturbations is
introduced progressively. The task was thus the same as Experiment 2

except that the mean of the distribution of perturbations is increased
progressively from 0 to 30° during the first half (linearly over trials
1–120) of the first Learning sub-block (for a comparison of learning
curves, see Fig. 8A).

This experiment was motivated by the results observed in Experiment
2 (an asymmetry in the generalization of uncertainty, see Results), which
could suggest that generalization of uncertainty has a visual feedback
reference frame (see below, Models for generalization). By introducing
the mean of the perturbations progressively rather than suddenly we
expect visual feedback to generally appear closer to the learning direction
during learning. If the hypothesis that generalization of uncertainty has a
visual feedback-centered reference frame is true, then we expect the
asymmetry to disappear or at least be significantly smaller compared with
Experiment 2.

Experimental protocol: details. There are two important details to be
noticed regarding the experimental design of the experiments. It is not
possible to measure a baseline for uncertainty using this protocol. It is not
possible to measure a baseline for relative reliance on midpoint feedback
due to the fact that we need to introduce a perturbation to measure the
slope (Eqs. 1 and 2, Figure 2B). For that reason we measured the gener-
alization of two different levels of variability—SD of 4 and 12°. These SD
values were chosen empirically based on several constrains that the task
imposes: at the same time that both values need to be sufficiently differ-
ent, the smaller variance cannot be too small, otherwise the range of the
perturbations is not large enough to measure the relative reliance on
midpoint feedback (the slope of a linear regression) with a reasonable
confidence interval. The higher variance condition cannot be too large
otherwise it could introduce nonlinearities (Körding et al., 2007, Wei and
Körding, 2009) and because of the constrains inherent to working in a
circular support. The SD of the likelihood was chosen empirically so that
the slopes would be close to 0.5. This is the range where behavior is
influenced equally by prior and likelihood, and thus where fluctuations
in uncertainty will have the highest effect. Several values were tested while
designing the experiment, starting with the theoretical value that would
produce the desired slope, and changing it until values obtained for the
slope were �0.5.

In the generalizing directions, the SD of the perturbation used to probe
uncertainty is the same regardless of the SD of the imposed perturbation
in the learning direction. Since midpoint feedback is necessary to mea-
sure subject’s relative uncertainty, special care is needed to ensure that
this feedback does not bias measurements of generalization. Differences
in learning and sensorimotor integration could both lead to spurious
differences in the patterns of relative uncertainty. In all experiments we
do not provide endpoint feedback in the generalizing directions and the
spread and timing of the midpoint feedback was the same across the two
variance conditions. Additionally, we set the variance of the perturbation
in the generalizing directions to the geometric mean of the two SDs used
in the learning directions, namely �4 � 12°. This guarantees that the
only difference is the distribution of perturbations between the blocks of
trials during movements in the learning direction. The important conse-
quence is that, even if the midpoint feedback allowed subjects to learn
during generalization trials, learning would only act to bring the two
generalizations curves closer together. The methods used here, thus, set a
lower bound on the distance between the generalization patterns for the
two variance conditions.

Data analysis: general
Final hand position and estimated perturbation. In this paradigm, the final
hand position angle, �fh gives us a measure of subjects estimated pertur-
bation �̂, specifically: �̂ � ��fh. Indeed, if the subject estimates a �̂
degree rotation then his/her best attempt at hitting the target is by having
the final hand position angle be � �̂ degrees. We compute the final hand
position for each trial by averaging the last data point before the hand
goes beyond a distance of 72 mm—the target distance—from the center
of the starting circle and the first data point after that. Trials were re-
started if subjects did not go beyond the target distance, thus �fh and �̂ are
defined for every trial.

Measuring generalization of uncertainty: relative reliance on midpoint
feedback (slope). We assume that the estimated perturbation corresponds
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to the mean of the posterior (Körding and Wolpert, 2004). Assuming
Gaussian distributions, an ideal observer/actor would combine informa-
tion from their prior over cursor perturbations (�p) and the perturbation
angle sensed from the midpoint feedback information (�f) weighting
their values by their relative precisions, according to the following:

�̂ �
� f

2

�p
2 � � f

2 �p �
�p

2

�p
2 � � f

2 � f. (1)

Where �p
2 and �f

2 denote subjects’ uncertainty in prior and midpoint
feedback, respectively. Subjects’ estimated angle of the perturbation (�̂)
applied to the cursor is reflected in the angle of their final hand position.
This equation is an approximation of Bayesian integration with circular
variables, but works well when the perturbation and feedback variances
are small as they are here. As a proxy for the sensed cursor perturbation
angle (�f), we use the centroid of the sampled flashing dots of the likeli-
hood. That is, instead of considering the real perturbation angle we con-
sidered the angle that a vector from the center of the central blue circle to
the centroid of the flashing dots would do with the target direction if the
subject had moved straight to the target. Importantly, this equation (Eq.
1) allows us to estimate the relative learned/generalized variance of the
prior for each learning/generalizing direction, and to compute a relative
generalization function for uncertainty. Indeed, for the reaches data in
each variance condition and direction we can perform a linear regression
(Fig. 2B) of the estimated perturbation (�̂) as a function of the corrected
perturbation angle (�f). The value of the slope (sp) of that linear regres-
sion gives us a measure of relative reliance on midpoint feedback/likeli-
hood. Importantly, if subjects are behaving in a Bayes-optimal way (see
Eq. 1), then the slope should be equal to the following:

sp �
�p

2

�p
2 � � f

2. (2)

Hence, the slope gives us a relative measure of a subject’s prior uncer-
tainty for each variance condition and direction. If a subject’s prior un-
certainty is much higher than the likelihood uncertainty, then this slope
value will approach one, i.e., the subject will rely almost exclusively on
midpoint feedback. If, on the other hand, the prior is much less uncertain
than the midpoint feedback information, then this slope will approach
zero, and subjects should almost not rely on the midpoint feedback in-
formation. This slope, the relative reliance on midpoint feedback, serves
as the basis for most of our analysis. We use the median of 1000 bootstrap
samples to reduce the influence of outliers when computing the slopes.
Specifically, if for a given target direction we have data from n trials in the
Testing Uncertainty sub-block, we compute the slope on 1000 sets of size
n randomly drawn with replacement from the original n trials. The me-
dian of these 1000 values will be our estimate of the slope, and by com-
puting the SD of these 1000 values we obtain an estimate of the SEM. The
centroid adjustment and bootstrapped slope estimates provide more robust
measures of behavior, but using unadjusted perturbations and maximum
likelihood slope estimates produce qualitatively very similar results.

Measuring generalization of the mean
Inferred mean. We are able to infer the mean of the prior in both exper-
iments using the data from the Testing Uncertainty sub-block. We do
this by computing the intercept of a linear regression; we can rearrange
Equation 1 to obtain the following:

� f � �p �
� f

2 � �p
2

� f
2 �� f � �̂�. (3)

That is, for each target direction, the subjects’ prior mean, �p, is estimated
using the intercept of the linear regression of �f as a function of �f � �̂.

Direct measurement of the prior’s mean. In Experiments 2 and 3, during
the Testing Mean sub-block, we were able to directly measure general-
ization of the mean in each of the generalizing directions; during the trials
in the generalizing directions of the Testing Mean sub-block, subjects
were not shown midpoint feedback (the likelihood) and hence their
estimate—as inferred by final hand position—is assumed to be the mean
of the prior distribution in that direction. Using this information we were

able to compute, during the experiment, the means of the perturbations
used to probe uncertainty in the generalizing directions during the Test-
ing Uncertainty sub-block (see above, Experimental protocol). During
trials in the learning direction subjects were still shown midpoint feed-
back. Thus, their average final hand position during trials toward the
learning direction is an estimate of the mean of the posterior and not of
the prior. The generalization patterns obtained during the Testing Mean
sub-block match very well with the ones inferred using the data from the
Testing Uncertainty sub-blocks (F(1,7) � 3.27, p � 0.11, two-way (testing
block, direction) repeated measures (subject) ANOVA; Figure 5C, first
and second rows for individual subject data, D). The higher complexity
of this task, relative to previous studies that measured generalization of
means (Fernandes et al., 2012), may have led to smaller variability (pos-
sibly due to smaller variability in cognitive strategies) across subjects.

Absolute mean and percentage adaptation to the mean. In Experiments
2 and 3, since for half of the subjects the mean of the perturbation was
�30°, we normalized the estimated perturbation (as measured by the
negative of the angle of final hand position) according to the sign of the
mean of the perturbation; we multiplied by �1 the angle of the estimated
perturbation if the mean of the perturbation was negative (�30°). Hence,
a positive absolute mean corresponds to a movement that counteracts
the perturbation. We call the measurements of the mean using this nor-
malization the inferred absolute mean and the measured absolute mean,
depending on whether they were determined using data from the Testing
Uncertainty or from the Testing Mean sub-block, respectively. Using the
inferred absolute mean we compute the inferred percentage adaptation
to the mean, which is defined as the amount of learned/generalized mean
relative to the learned mean in the learning direction (Figure 4E). The
inferred percentage adaptation to mean in the learning direction is
hence, by definition, 100%.

Models for generalization
Here we consider on-line learning models that use gradient descent to
learn the mean and SD of the imposed prior. For each trial the mean and
SD are updated to minimize the expected squared error between the
target angle and the final cursor position angle.

Consider the subjects’ original prior assuming no visuomotor
rotation:

p0 � ���p
0,�p

0� � ��0	,�p
0�. (4)

Where �p
0 denotes the subject’s original prior SD and we assume that

there is no bias in the subject’s original prior mean, i.e., we assume that
�p

0 � 0	. We assume also that the original prior is the same for all
directions. Throughout this section we generally use � to denote pertur-
bation related angles and � to denote target angles. Note that the pertur-
bation angles � are always given relative to that trial’s target direction and
target angles are given relative to the learning target direction.

We hypothesize that subjects start with their original prior mean (�p
0

� 0	) and SD (�p
0), and that in each learning trial (during the Learning

sub-blocks) they update their prior mean and SD (using Eqs. 7–10 be-
low). We assume that this learning of the perturbation can generalize to
other directions, and that the amount of generalization depends on the
similarity between the two trials/contexts (the context in which the per-
turbation was learned and the new context/trial). The perceived similar-
ity between two particular trials/contexts depends on the reference frame
that the subject uses for learning that particular variable (mean or SD):
this reference frame can be target based (i.e., trials with similar context
are trials toward similar target directions; see Model T and mean update
in Model VF below), or it can be a visual-feedback/cursor-based refer-
ence frame (i.e., trials with similar contexts are trials that have midpoint
visual feedback in a similar position; see SD update in Model VF below).

How similar two trials are perceived by a subject can be defined by a
context similarity function. Here we define the context similarity func-
tion, W�

r
��g�, for a given generalizing direction �g relative to the learning

reference frame direction �r, as a scaled von Mises function:

W�
r
��g� � �b0 � exp �b1 cos ��g � �r���/	, (5)
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where b0 is a baseline for context similarity, b1 defines the width of the
context similarity, and 	 � b0 � exp (b1) is a normalization factor so
that context similarity is 1 in the reference frame direction, that is,
W�r

��r� � 1. For instance, if the reference frame is target centered then
learning, and thus the peak of generalization, happens in the learning
target direction, �l, i.e., W�

l
��l� � 1 (see Model T below). This is the

same as saying that generalization is complete in the learning target di-
rection. If the reference frame is visual feedback centered then learning
happens/generalization is maximal in the direction of the centroid of the
midpoint visual feedback in that particular trial, �c (see Eq. 7, the gradi-
ent update of SD in Model VF below). Notice that, unlike the target-
based reference frame, in the visual feedback-centered reference frame
the direction of learning generally changes from trial to trial.

Both models proposed below have the following parameters: b0
�p, b0

�p,
b1, which are the three context similarity function parameters (see Eq. 5),
allowing for different context similarity baselines for mean (b0

�p) and
variance (b0

�p); the initial prior uncertainty �p
0 and likelihood uncertainty

�f; and the learning rates of mean and variance, 
�p
and 
�p

. These seven
parameters were enough to produce good fits to the data from the first
block. However, we observed that none of the models managed to cap-
ture decreases in the variance of the prior during the second block. For
this reason, and to account for possible differences between the Learning
and the Testing sub-blocks, we added an extra parameter that scales the
model’s output of prior uncertainty at the end of learning before fitting it
to the testing data. Hence both Models T and VF have a total of eight
parameters. While Model T is target centered, Model VF tests the hy-
pothesis that generalization of variance has a nontarget-centered refer-
ence frame—the visual feedback information.

Model T: target-centered reference frame for both mean and variance. On
each ith trial of the Learning sub-block, the subject is trying to minimize
the squared error between the target angle and the final cursor position
angle, that is, trying to learn the mean �̂p and variance �̂p

2 of the prior
imposed in the learning direction such that

��̂p
�

l, �̂p
�

l� � arg min
�p,�p

e ��i,�p,�p�, (6)

where �i is the perturbation imposed during the ith trial and
e��i,�p,�p� � ��i � �̂��p,�p��

2 where �̂��p,�p� is defined in Equation 1.
The model takes as input the learning trials and assumes that the SD and
mean of the subject’s prior evolve according to the following:
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Notice in Equations 7 and 8 that the reference frame is the learning target
direction, �l: the context similarity function, W�

l
� � �, is computed rela-

tive to the learning direction and the gradient is evaluated in both equa-

tions at the current mean (�p
�

l
,i�1) and SD (�p

�
l
,i�1) of the prior in the

learning direction.
Model VF: different reference frames, target centered for mean but visual

feedback centered for variance. The only difference between the Models T
and VF is that in Model VF the reference frame for uncertainty in the
prior (SD, �p) is centered on the angle of the centroid of the displayed
cloud of dots, �c, while the context function for the mean remains cen-
tered on the learning target direction, �l:
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Notice that in the equation for the gradient update of the SD of the prior
(Eq. 9), the context similarity function, W�

c
� � �, is computed relative to

�c. Notice also that in both equations, even though, as in Model T,
the gradient is evaluated relative to the current mean of the prior in the

learning direction, �p
�

l
,i�1, the SD is evaluated in the direction where the

cloud of dots appeared, �p
�

c
,i�1.

To avoid using behavioral data obtained during the Learning sub-
block, the model uses the predicted position of the cloud of dots as a
proxy for �c. This predicted position is obtained by computing, given the
trial perturbation, where the cloud of dots would appear if the subject
performed a straight center-out movement corrected by the current
mean of the prior. Equivalent results were obtained when data from the
Learning sub-block, the actual angle of centroid of the cloud of dots, was
used. However, using only testing data allows for a fair comparison of all
models, and allows us to simulate the models even in the absence of
behavioral data.

Computing the gradient
To compute the partial derivative of the error function, e��i,�p,�p�, we
observe that

e��i,�p,�p� � ��i � �̂��p,�p��
2 � ��i � sp� f � �1 � sp��p�

2,

where sp � �p
2/��p

2 � �f
2� and �̂ is defined in Equation 1.

Applying the chain rule we obtain the partial derivatives:
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2�2 2�p

�e

��p
� �2��p � �1 � sp��p � sp� f��1 � sp�,

which are then used in the gradient update Equations 7–10.

Model fitting
We fitted the models to the slope and mean data of each subject by
minimizing the squared distance to the subject’s slope and mean in each
direction weighted by the precision [inverse variance, obtained using
bootstrapping, see above, Measuring generalization of uncertainty: rela-
tive reliance on midpoint feedback (slope)] of each slope and mean data
point. To account for discrepancies between the Learning and Testing
sub-blocks, both models have an additional scaling parameter that allows
us to fit the output of the learning model to subject’s prior uncertainty
during testing. To compare models (Fig. 7), we perform a Wilcoxon
signed rank test on the weighted root mean square errors (RMSEs).

Results
Here we ask how a noisy perturbation in one learning direction
affects reaches into other directions. In particular, we aim to
extend movement generalization studies by understanding how
both the mean and the variance of a perturbation imposed during
reaches into the learning direction affect other movements. Sub-
jects controlled the position of a hidden cursor with their right
index finger while their true hand position was occluded by a
projector mirror system (Fig. 1). They made reaches from the
workspace center to one of eight concentric targets with a visuo-
motor rotation applied to the hidden cursor position. The visuo-
motor rotation was drawn randomly each trial from a Gaussian
distribution with fixed mean and variance. During learning sub-
jects were incentivized to make reaches to one of the targets
(learning target) and received endpoint feedback that allowed
them to adapt to the distribution of perturbations (see Materials
and Methods). During testing subjects also made reaches to the
other targets (generalizing targets), without endpoint error feed-
back, allowing us to probe generalization. All subjects went
through two sub-blocks of learning, each with a different vari-
ance (�p: 4° or 12°). We measured how the learned variance gen-
eralizes, first without perturbing the mean (mean of 0° in
Experiment 1) and then while also perturbing the mean (mean of
�30° in Experiments 2 and 3).
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As subjects adapt to the noisy visuomotor rotations they up-
date their knowledge of both the mean and variance of the per-
turbations. We can probe subjects’ prior uncertainty (i.e.,
subjects’ estimate of the variance of the perturbation in a partic-
ular direction) by providing noisy feedback about the cursor po-
sition midway through the movement in the form of a cloud of
dots (Körding and Wolpert, 2004). Subjects (n � 32 in Experi-
ment 1 and n � 8 per experiment for Experiments 2 and 3) use
this midpoint feedback information to correct their movements
during each reach (Figs. 1, 2A) and they rely more on feedback the
more uncertain they are about the cursor position. Computing
the slope (Fig. 2B) of the negative of final hand position angle
(proxy for estimated perturbation) as a function of the perturba-
tion angle (proxy for perturbation sensed via midpoint feedback)
provides a measure of the uncertainty that subjects have about
the expected perturbations (prior uncertainty) relative to the un-
certainty about the midpoint feedback (likelihood uncertainty;
Körding and Wolpert, 2004). Intuitively we can see that, if sub-
jects are very certain about the perturbation (low prior uncer-
tainty) then they will tend to ignore the noisy midpoint feedback
information and the slope will have a value closer to zero. If on
the other hand they have a high prior uncertainty relative to the
uncertainty in the midpoint feedback, they will tend to rely only
on midpoint feedback and hence the slope will have a value of
one. For standard Bayesian integration using Gaussian distribu-
tions (Körding and Wolpert, 2004), the slope sp is given by

sp �
�p

2

�p
2 � �f

2,

where �p
2 and �f

2 are the variances of the prior and likelihood
distributions, respectively (see Materials and Methods for de-
tails). Hence, larger slopes indicate a higher reliance on sensory
feedback and higher uncertainty about the perturbations (Fig.
2B). Whether subjects behave according to the predictions of
Bayesian integration or not, the slope is a measure of how uncer-
tain they are about the hidden perturbation.

Experiment 1
We first wanted to know how uncertainty generalizes with a zero
mean perturbation. We find that subjects learn about the vari-

ance and exhibit smaller slopes for the small variance condition
than for the high-variance condition (Fig. 2C). This is what we
should expect since a smaller slope implies that the subject relies
less on the midpoint feedback and, hence, that the subject is more
certain a priori about the hidden cursor position. Furthermore,
learning curves under the same variance condition converge to
the same value during the Learning sub-block, no matter which
condition subjects started in, and learning appears to asymptote
before we assess generalization. Indeed, these two groups of sub-
jects (the ones that started with the high-variance condition and
the ones that started with the low-variance condition) did not
show a significant difference between their slope values after
training (F(1,472) � 0.95, p � 0.33 for main effect of group, four-
way nested ANOVA over subject, variance, group, target direc-
tion where subject is nested in group). By the end of each
Learning sub-block subjects have adapted to the new variance
condition. In the following analysis we thus combine data across
groups to ask how subjects generalize this learned variance.

Subject exhibiting smaller slopes for the small prior variance
condition (Fig. 2C) is qualitatively consistent with “Bayes opti-
mal” behavior. But which convergence values would be optimal?
Under the unrealistic assumption that subjects have perfect acu-
ity, attention, and centroid estimation (Tassinari et al., 2006), the
Bayesian optimal values for slope are given by Equation 2. In
reality, however, if we relax this assumption we expect them to be
smaller than the optimal predictions. Furthermore, the slope also
depends on subjects’ interpretation of the task. If the subjects,
instead of perceiving the task as a visuomotor rotation (as it is),
perceive it as a visuomotor displacement/translation then, after
observing inferring the displacement midway through the move-
ment, they would correct half as much as they should and thus we
would measure a slope that is half the theoretical prediction. We
find that subjects’ slope values at the learning block generally lie
between these two (Fig. 2C). This finding may suggest that sub-
jects are uncertain about the kind of applied perturbation (Taylor
and Ivry, 2013) or that the subject’s actual likelihood (sensory)
uncertainty differs from the task uncertainty due to acuity, atten-
tion, or bias.

To examine generalization of uncertainty we quantify sub-
jects’ reliance on midpoint feedback (as measured with the slope)

Figure 1. Experimental setup and typical trajectory data. A, Subjects move a hidden cursor from a starting position to a target (yellow) by moving their occluded right index finger. We measure
the generalization of the learned variance of a perturbation using the response to a noisy midpoint cursor feedback (red dots). B, Experiment 1, with zero mean perturbation, and a SD (�p) of either
4° or 12° (shown example trajectories are for �p � 12°). Subject’s hand and cursor position during learning trials. Each thin red line represents the trajectory of the real hand position (hand, left)
or of the hidden cursor position (cursor, right) during a trial toward the learning direction (yellow target). The black solid line represents the average trajectory toward the learning direction. Average
trajectories for generalizing directions are shown as black dashed lines (corresponding targets are black dots). The position where midpoint feedback is triggered is denoted by the red circle. Left,
Hand trajectories are also superimposed on the workspace shown in A. C, Experiments 2 and 3, where the absolute mean perturbation is 30° (introduced abruptly in Experiment 2 and progressively
in Experiment 3) and the SD is either 4° or 12° (shown example trajectories are from Experiment 2 with �p � 12°). Same notation as B. Note that, because the cursor is rotated 30° on average, the
subjects’ hand has to move on average in a �30° direction (relative to the target) so that the cursor hits the target.
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as a function of the direction of movement. We find that the
reliance on midpoint feedback (Figs. 2D, 3 for individual subject
data) is significantly different between the two variance condi-
tions (F(1,31) � 65.13, p 
 10E-8, two-way repeated-measures
ANOVA on slope for eight directions and two variance condi-
tions) and slopes for the high-variance condition are higher than
those for the low-variance condition for movements into all di-
rections (p � 0.006, for every direction, paired t tests, n � 32).
Uncertainty in the prior (i.e., a subject’s learned variance of the
prior, as measured by the relative reliance on midpoint feedback)
increases in all directions and decays with increasing distance
from the learning direction. Unlike the mean (see Experiments 2
and 3 below; but see Fernandes et al., 2012), uncertainty appears
to have a strong global component.

Even though the perturbation had zero mean, we can infer the
mean of the subject’s prior by analyzing the intercept of a linear
regression using data from the Testing sub-block (see Materials
and Methods for details). As with the slopes, we do not find a
significant difference between the inferred means in the two
groups of subjects (F(1,472) � 0, p � 0.97, four-way nested
ANOVA), and hence we pool the data from both groups in the
remaining analyses. We find an interesting asymmetry consistent
with use-dependent learning/adaptation theory (Diedrichsen et
al., 2010; Huang et al., 2011; Verstynen and Sabes, 2011); in the
reaches toward targets that neighbor the learning target direction,
hand movements are biased toward the learning target and this
bias decays with distance from the learning target (Fig. 2A, ar-
rows, E). Furthermore the bias is stronger in the low-variance
condition (p 
 0.001 for both 22.5° target directions, paired t
tests) when movements tend to be less variable and hand position
covers a narrower region. We observed signs of a similar effect in
a previous study exploring generalization of the mean (Fernandes
et al., 2012). Here, in the absence of mean adaptation, there is a
clear asymmetry where the large number of subjects and the in-
creased complexity of the task (reduced cognitive strategies and
across-subject variability) may make the effect more observable.
These results suggest a weak use-dependent learning effect in this
experiment.

Experiment 1 is an extension of previous studies that mea-
sured the generalization of fixed visuomotor perturbations, but
instead of manipulating the mean we have manipulated the vari-
ance (Krakauer et al., 2000). In a previous study we showed that
the generalization of the mean seems to be unaffected by changes
in prior uncertainty (Fernandes et al., 2012). Fully understanding
the generalization of uncertainty requires some understanding of
how simultaneously perturbing the mean affects the generaliza-
tion of uncertainty. Experiments 2 and 3 aim to characterize these
interactions and differences between generalization of the mean
and variance.

Figure 2. Experiment 1. A, Hand trajectories during the Testing Uncertainty sub-blocks for
the two levels of variance (SD of 4 and 12°) in the learning direction (purple) and the general-
izing directions (other colors) for one subject (Subject 1.1). Arrows indicate the angular direction
of an eventual use-dependent effect (E). B, Probing uncertainty in the prior by computing the
relative reliance on midpoint feedback. Estimated perturbation as a function of the perturbation
angle, for one subject (same as in A), in the learning direction (left) and in two generalizing
directions (�22.5 and �45°; right) during the Testing Uncertainty sub-block. Solid lines de-
note linear fits to the data. Insets, Slope or relative reliance on midpoint feedback (�SE) during

4

movements in that direction for this subject. Colors of circles in the inset indicate which target
direction the data correspond to in A. C, Learning of uncertainty for two groups of subjects:
subjects that started with the low-variance condition and subjects that started with the high-
variance condition. Solid lines are average slopes (�SEM) across subjects considering bins of 20
trials. Dashed lines correspond to the optimal theoretical values assuming perfect visual acuity
and complete adaptation of prior uncertainty. Dotted lines correspond to the optimal behavior
if the subjects assume the perturbation is a translation instead of a rotation. D, Relative reliance
on feedback for the two levels of prior uncertainty as a function of target direction relative to
learning direction (0°). Mean (�SEM) of slopes across all subjects. Colors of the circles on the
x-axis indicate the correspondent directions in A. E, Inferred mean of prior for the two levels of
uncertainty as a function of target direction relative to learning direction. Inferred mean of prior
(�SEM) across all subjects. Arrows indicate the expected direction of an eventual bias caused
by use-dependentness. Arrow’s colors match the colors in A.
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Experiment 2
In Experiment 2 our aim is to characterize how the mean of a
perturbation affects the generalization of uncertainty. As in Ex-
periment 1, it is important to quantify the effects of the different
perturbation variances (low uncertainty: �p � 4° or high uncer-
tainty: �p � 12°; Fig. 4A) and to determine whether training
order (i.e., high-to-low vs low-to-high variance) matters. The
average learning curve for slope across subjects (n � 8) seems to
asymptote to values similar to the ones observed in Experiment 1
(Fig. 4B), even with the addition of a nonzero mean perturbation.
We found that, in block 1, the reliance on midpoint feedback
(slope; Fig. 4C) is significantly different between the two variance
conditions (F(1,8) � 19.72, p � 0.02, two-way repeated-measures
ANOVA on slope for eight directions and two variance condi-
tions). However, in Experiment 2 we found a significant differ-
ence in reliance on midpoint feedback between the two groups of
subjects after training (F(1,112) � 8.7, p � 0.004, four-way nested
ANOVA–subject, variance, group, direction where subject is
nested in group; Fig. 4C,D). Because the order of training now
matters we will present and analyze the data from the two blocks
separately.

In contrast to Experiment 1, in Experiment 2 we find a strong
asymmetry in the generalization of uncertainty (Fig. 4C,D; for
individual subject data, see Fig. 5C). The generalized prior uncer-
tainty as measured by the relative reliance on midpoint feedback
is higher than expected for the neighboring targets on one of the
sides of the learning direction, even higher than the learned un-
certainty in the learning direction. These directions of higher

uncertainty correspond to the opposite side (relative to the target
direction) to where the hand has to move to correct for the per-
turbation; that is, they correspond to the direction of the mean of
the perturbation (Figs. 4A, 5A). Furthermore, these are the direc-
tions where the midpoint visual feedback is more often displayed
during early learning (before subjects learned the mean) and cor-
respond to trials with bigger final cursor position errors (Fig. 5B).
Furthermore, this asymmetry is observed consistently across sub-
jects and sign of the perturbation (Fig. 5C,E), and seems to be
robust to any subject-specific cognitive strategies (Taylor and
Ivry, 2013). We find that, when changed simultaneously, the
mean and variance of perturbations have asymmetric effects in
the generalization of the variance of the prior over those
perturbations.

Since we find a surprising asymmetry in the generalization of
variance in Experiment 2, we can ask whether manipulating
mean and variance simultaneously has a similar effect in the gen-
eralization of the mean. We find that the generalization of the
mean angular perturbation is local, with a width of about 30°,
similar to what has been reported in previous studies (Krakauer
et al., 2000; Fernandes et al., 2012; Figs. 4E,5D). As in previous
studies, with similar center-out reaching designs (Fernandes et
al., 2012), generalization to targets at a �90° angular distance
from the learning target is not significantly different from zero
(p � 0.13 for the �90° targets in both uncertainty conditions, t
tests). Furthermore, in agreement with Experiment 1, in the
directions that neighbor the learning target we observe an asym-
metry consistent with use-dependent learning. Note that the use-

Figure 3. Individual subject slope data for Experiment 1. Error bars � SEM (bootstrap). Lines are Model VF (see above, Models) fits to individual subjects. Black and orange bar (inset) indicates
the order in which the different uncertainty blocks were presented to each subject (black denotes the 4° condition and orange denotes the 12° condition).
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dependent asymmetry, although reflected as an asymmetric
generalization pattern in the mean, can be interpreted as move-
ments close to the training direction being attracted by the direc-
tion where training occurred (Fig. 2A,E, arrows). It seems that
the asymmetry observed in the generalization pattern of the mean
is be hand movement related while the asymmetry observed in
the generalization of uncertainty seems to be related to overlap-
ping visual feedback.

Models
If the amount of generalization depends only on similarity be-
tween contexts and context is symmetric around target, then we
would not expect to see an asymmetric pattern in the generaliza-
tion of variance. In practice, however, the coordinate systems in
which subjects try to solve the problem can have an influence on
the generalization patterns (Gonzalez Castro et al., 2011). To
allow for this possibility we hypothesized that the asymmetry
could have arisen from a context that is not target centered. Do
subjects learn about visual feedback position (Taylor et al., 2013)
when generalizing uncertainty?

To see if the data are consistent with this hypothesis and to
implement models where feedback position is relevant, we need
to consider the distribution of learning data. One natural way of
implementing such a model is in terms of on-line gradient de-
scent. Every trial, one goal of the movement system may be to
update certain parameters so that future movements will be bet-
ter–we want to go down the gradient of errors (Thoroughman
and Shadmehr, 2000; Taylor et al., 2013). We thus implemented
two on-line learning models that take the perturbations im-
posed during the learning trials. These models implement gra-
dient descent on the value of (assumed direction-dependent)
mean and variance of the before minimize the squared error
between target angle and final cursor position angle of each
trial (see Materials and Methods for details). While for both
models the reference frame for the generalization of the mean
is target centered, Model VF (Visual Feedback) uses a coordi-
nate system for generalization of variance related to the posi-
tion of visual feedback while Model T (Target) uses only
target-centered coordinates. This way of phrasing the problem
allows us to consider the effect of the candidate coordinate
systems on learning and generalization.

We find that Model VF captures the generalization patterns of
both experiments (Figs. 3, 5C, second and third rows for individ-
ual subject fits, 6). Importantly, Model VF was able to capture the
asymmetric generalization of uncertainty of Experiment 2 (Fig.
6A) and, simultaneously, explain the data in Experiment 1 (Fig.
6C), except for the use-dependent effect. We find that, while none

Figure 4. Experiment 2. A, Left, Hand and cursor trajectories of a particular subject (Subject
2.1) during the Testing Uncertainty sub-blocks for the two levels of variance (SD of 4 and 12°) in
the learning direction (purple) and the generalizing directions (other colors). Right, Probing
uncertainty in the prior by computing the relative reliance on midpoint feedback. Estimated
perturbation as a function of the perturbation angle, for the same subject (Subject 2.1), in the
learning direction and in two generalizing directions (�22.5 and �22.5°) during the Testing

4

Uncertainty sub-block. Solid lines denote linear fits to the data. Colored circles indicate to which
target direction (left) the data corresponds. B, Learning of uncertainty for the two groups of
subjects: subjects that started with the low-variance condition and subjects that started with
the high-variance condition. Solid lines are average slopes (�SEM) across subjects considering
bins of 20 trials. C, D, Relative reliance on midpoint feedback for the two levels of prior uncer-
tainty as a function of target direction relative to mean of perturbation (�30°) following the
first (C) and second (D) Learning sub-blocks. Mean (�SEM) of slopes across all subjects (n � 8)
in Experiment 2 (opaque solid lines). The transparent lines are the results of Experiment 1 (same
data as in Fig. 2D separated by blocks). Insets show trajectories to the two neighboring direc-
tions of the learning target for Subject 2.1 (same data as A). E, Inferred percentage adaptation
(�SEM) for the mean in the generalizing directions relative to the learning direction across all
subjects. Colors of circles on the x-axis in C–E indicate the correspondent target directions in A
and insets in C and D.
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of the models is significantly better for Experiment 1 (p � 0.16
for uncertainty and p � 0.61 for mean; Wilcoxon signed rank test;
Fig. 7A,C), Model VF is better than Model T for Experiment 2:
notice that for all subjects the RMSE for uncertainty in Model VF

is smaller or equal than the RMSE obtained with Model T (p �
0.008 for uncertainty and p � 0.055 for the mean; Wilcoxon
signed rank test; Fig. 7B,D). Although lacking a normative inter-
pretation/justification, using different reference frames for mean

Figure 5. Individual subject data for Experiment 2 and further data analysis. A, Distribution of directions of the centroid of midpoint feedback (relative to the sign of the mean of the prior) for all
subjects, for movements toward the learning direction during the first Learning sub-block. Target colors correspond to the circle colors on the x-axis of Figure 4C; this is the Learning sub-block that
preceded the Testing sub-block used to make that figure. B, Trial error as a function of the angle of midpoint feedback centroid during the first Learning sub-block for all subjects in Experiment 2. C,
Individual subject data for Experiment 2. Error bars � SEM (bootstrap). Black and orange bar (first row, inset) indicates the order in which the different uncertainty blocks were presented to each
subject. Lines in second and third row are Model VF (see above, Models) fits to individual subjects. D, Generalization of mean (� SEM) measured during the Testing Mean sub-block (opaque),
compared with the inferred generalization of the mean (transparent, same data as Fig. 4E) during Testing Uncertainty sub-block. E, Generalization of mean and of relative reliance on midpoint
feedback (slope) separated by sign of the mean of the perturbation bars � SEM. The asymmetry in generalization of uncertainty (slope) was stronger for the positive mean (�30°, left bottom).
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and variance and using gradient descent learning accurately cap-
tures the generalization patterns across experiments.

Experiment 3
Previous studies have examined the effects of sudden and gradu-
ally introduced perturbations (Kagerer et al., 1997; Turnham et
al., 2012) and have found different behaviors when perturbations
are introduced gradually; for instance, gradually introduced
visuomotor perturbations can lead to more complete adaptation
and larger aftereffects (Kagerer et al., 1997). If Model VF is cor-
rect then we expect gradually introduced perturbations (i.e.,
when the mean of the distribution of perturbations is increased
slowly) to produce a less asymmetric generalization curve for
uncertainty compared with Experiment 2. In this case, during the
learning trials, we expect errors to be small and the midpoint
feedback to appear consistently closer to learning target.

To test this hypothesis we ran a third experiment (Experiment
3) with the same structure as Experiment 2 except for the fact
that, during the first Learning sub-block, the mean of the pertur-
bation is introduced slowly. Specifically, the mean of the distri-
bution of perturbations changes linearly from 0 to 30° during the
first half (120 trials) of the first Learning sub-block (see Materials
and Methods for details). The progressively introduced mean is
reflected in the learning curves (Fig. 8A) and the behavior during

learning seems to be less variable across subjects. Notice that, as in
Experiment 2, during the Testing Uncertainty sub-block, hand
trajectories in the learning direction (Fig. 8B, left, purple traces)
overlap with hand trajectories in trials toward the neighboring
target direction of lower uncertainty (Fig. 8B, left, green traces).
Conversely, if there is incomplete learning of the mean in the
learning target direction then the hidden cursor trajectories in the
learning direction will be closer to the hidden cursor trajectories
in the direction of maximum uncertainty (Fig. 8B, right, gray
traces). The asymmetry in the generalization of uncertainty is still
present (Fig. 8C,D), but it is smaller than in Experiment 2 (p �
0.009, two-way nested ANOVA over subject, variance, and exper-
iment where subject is nested in experiment). As predicted, when
introducing the mean of the perturbation progressively, we ob-
serve a smaller asymmetry in the generalization of uncertainty.

We could have expected the asymmetry to disappear com-
pletely; however, despite the mean of the perturbation being in-
troduced progressively, the centroid of the midpoint feedback
still appears closer to the direction of higher uncertainty (Fig.
9A,B). Even though, unlike Experiment 2, in Experiment 3 we do
not find a significant difference between Models T and VF (p �
0.05 for uncertainty and mean, Wilcoxon signed rank test), we
still observe an asymmetric generalization pattern consistent with

Figure 6. On-line learning models for different reference frames. A, Fits of the models (shaded area is �SEM for Model VF fits) for the slope data of Experiment 2 (same as Fig. 4C,D, opaque). Error
bars � SEM. B, Models’ fits for the mean data of Experiment 2. C, Fits of the models for mean and slope data (same as Fig. 4C, D, transparent) of Experiment 1. Error bars � SEM. Lines are average
across subjects of individual fits. Error bars � SEM.
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a visual-centered reference frame, and Model VF is able to qual-
itatively capture the asymmetry in most of the subjects (Fig. 9C).

In a first analysis it seems that the asymmetry in the general-
ization of the mean and the asymmetry in the generalization of
uncertainty have different causes. The former is hypothesized to
be caused by use-dependentness and the latter by a visual-
feedback reference frame. We cannot exclude, however, that they
might have a common explanation. In fact, the amount of asym-
metry (as measured by the difference in generalized mean or
slope between the two target directions that neighbor the learning
direction) in the mean generalization and in the uncertainty gen-
eralization are correlated (r � 0.58, p 
 0.001 for Experiments 2
and 3 combined, r � 0.58, p � 0.033 for Experiment 2, and r �
0.49, p � 0.053 for Experiment 3). Here we have found an asym-
metry in the generalization pattern of uncertainty that is consis-
tent with the use of a visual-feedback reference frame and
excludes the possibility of a pure target-based reference frame for
the generalization of uncertainty.

Discussion
Here we examined how priors over a stochastic visuomotor per-
turbation generalize. We examined, in particular, how prior un-
certainty generalizes, that is, how knowledge of the trial-by-trial
variability of an event (in our experiment, the perturbation) gen-
eralizes to similar but distinct contexts (here, reaches to other
directions). We first tested generalization in a paradigm in which
only the variance of the distribution of rotation perturbations
was changed, while the mean remained zero. We found that,
similarly to standard generalization of constant visuomotor ro-
tations, generalization of uncertainty has a local component.
However, unlike the mean, it affects movements into all direc-
tions. We then tested how uncertainty generalizes when we intro-
duce a stochastic perturbation with nonzero mean, i.e., when

both the mean and variance are perturbed. We observed asym-
metric generalization that is qualitatively consistent with a de-
scriptive, on-line learning model that assumes that mean and
variance generalize according to different reference frames.

In movement research, generalization experiments are usually
interpreted as being directly related to neuronal tuning proper-
ties (Krakauer et al., 2000; Thoroughman and Shadmehr, 2000;
but see Pearson et al., 2010; Taylor and Ivry, 2013). Under this
interpretation they constrain our conceptualization of neural
computation and reveal a great deal about the neural basis of
sensorimotor integration. We had seen evidence for some inde-
pendence in representation of mean and variance of priors in
previous studies when we showed that uncertainty does not affect
the width of generalization of the mean (Fernandes et al., 2012).
The results of this study indicate that knowledge of the variance
of external perturbations might be represented in a way that is
distinct from the knowledge about the mean– both the extent of
generalization and reference frames appear to differ.

The degree to which the brain is “Bayesian” has been exten-
sively debated over the last decade (Doya, 2007). Many studies
have shown that the brain achieves Bayes-like behavior for famil-
iar tasks (such as reaching) and that this behavior stems from
ongoing learning (Berniker et al., 2010). Such general-purpose
Bayesian behavior may result from a variety of non-Bayesian/
heuristic neural representations. Alternatively, Bayesian ideas
may be far more fundamental to the organization of the brain in
the sense that there is something Bayesian about the neural code
itself. For example, spikes in populations of neurons might di-
rectly represent probability distributions, including their means
and variances (Hinton and Sejnowski, 1983; Zemel et al., 1998;
Hoyer and Hyvärinen, 2003; Sahani and Dayan, 2003; Wu et al.,
2003; Ma et al., 2006; Deneve, 2008; Fiser et al., 2010; Ma, 2010;

Figure 7. Model comparison. A–D, Model comparison for Models T and VF for Uncertainty (A, B) and for Mean (C, D). Left, Weighted RMSE across subjects (95% confidence intervals, bootstrap)
of each model and of the difference between models for each subject. Right, Scatterplot of the RMSE for each subject for Models T and VF.
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Figure 9. Individual subject data for Experiment 3 and further data analysis. A, Distri-
bution of directions of the centroid of midpoint feedback (relative to the sign of the mean
of the prior) for all subjects in Experiment 3 (n � 8) for movements toward the learning
direction during the first Learning sub-block; first half (trials 1–120, when the mean of the
distribution of perturbations is being progressively increased from 0 to 30°) is separated
from second half (trials 121–240) of that Learning sub-block. Target colors correspond to
the circle colors on the x-axis of Figure 8C; this is the Learning sub-block that preceded the
Testing sub-block used to make that figure. B, Trial error as a function of the angle of
midpoint feedback centroid during the first Learning sub-block for all subjects in Experi-
ment 3. C, Individual subjects slope data for Experiment 3. Error bars � SEM (bootstrap).
Lines are Model VF fits to individual subjects. Black and orange bar (inset) indicates the
order in which the different uncertainty blocks were presented to each subject (black
denotes the 4° condition and orange denotes the 12° condition).

Figure 8. Experiment 3. A, Learning of mean for Experiments 2 (dashed lines) and 3 (solid
lines) for both groups of subjects: subjects that started with the low-variance condition (�p �
4°, black) and subjects that started with the high-variance condition (�p � 12°, orange). Lines
are average slopes (�SEM) across subjects considering bins of 20 trials. B, Hand and cursor
trajectories of a particular subject (Subject 3.1) during the Testing Uncertainty sub-blocks for
the two levels of variance (SD of 4 and 12°) in the learning direction (purple) and the general-
izing directions (other colors). C, D, Relative reliance on midpoint feedback for the two levels of
prior uncertainty as a function of target direction relative to the mean of the perturbation
(�30°) following the first (C) and second (D) Learning sub-blocks. Mean (�SEM) of slopes
across all subjects (n � 8) in Experiment 3 (opaque solid lines). The transparent lines are the
results of Experiment 2 (same data as in Fig. 4C,D). Insets show trajectories to the two neigh-
boring directions of the learning target for Subject 3.1 (same data as B). Colors of circles on the
x-axis in C and D indicate the correspondent target directions in the insets and in A.
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Soltani and Wang, 2010). However, none of these “Bayesian
brain” theories explicitly predicts generalization of uncertainty.
Furthermore, generalization is probably related to underlying
neural representations in a more complex way than generally
assumed in motor control research. Dissociation between gener-
alization of mean and variance emerges immediately from our
results and produces an important challenge to extensions of
“Bayesian brain” theories to generalization.

The lack of computational predictions for generalization of pri-
ors, and of uncertainty in particular, is mirrored in experimental
work where the focus both in behavioral as well as in electrophysio-
logical studies in motor control has been on the generalization and
representation of fixed perturbations without any trial-by-trial vari-
ability (but see Fernandes et al., 2012; Verstynen and Sabes, 2011).
To our knowledge, previous work had not indicated that means and
variances could generalize differently.

Previous studies have suggested that the reference frames for
generalization might be based on actual rather than planned
(target-based) trajectories (Gonzalez Castro et al., 2011). Other
studies have shown that generalization depends on context, and
that we can expect different generalization patterns if different
contexts are imposed (Berniker and Kording, 2008; Brayanov et
al., 2012; Taylor and Ivry, 2013). Studies that focus on the adap-
tation of the mean suggested that feedback plays an important
role in adaptation (Huang et al., 2011) and generalization (Taylor
et al., 2013). Differences in visual error information lead to
changes in generalization that can be explained by a neural net-
work that assumes error feedback processing on a set of homo-
geneous and invariant tuning functions (Taylor et al., 2013). The
use of the nontarget-based reference frame for the learning of the
mean has thus been shown previously. This study suggests the use
of a visual reference frame for the generalization of uncertainty.

We have characterized the differences between the generaliza-
tion of mean and uncertainty of a visuomotor rotation. We have
shown, in particular, that unlike the mean, uncertainty general-
izes globally. The mean, however, has been shown to generalize
globally in visuomotor gain experiments (Krakauer et al., 2000).
A useful follow-up experiment would be to extend the visuomo-
tor gain paradigm to also include uncertainty, and characterize
the asymmetries, differences in width and reference frames of the
generalization patterns under that paradigm.

We find clear signs that movements are biased toward typical
directions of previous hand movements, which is consistent with
the use-dependent learning/adaptation hypothesis (Diedrichsen
et al., 2010; Huang et al., 2011; Verstynen and Sabes, 2011). We
find this in both experiments and it is particularly evident in
Experiment 1 where the mean of the distribution of stochastic
perturbations was zero; this use-dependent asymmetry scales
with the uncertainty level and exists even when there is zero mean
perturbation. Although our model captures features of general-
ization patterns for both mean and uncertainty, it does not cap-
ture this use-dependent aspect of the generalization. Future
modeling work is needed to account for these effects by incorpo-
rating a hand-centered reference frame or other “model-free”
learning processes (Huang et al., 2011). In fact, even though
Model VF is consistent with the observed symmetry we cannot
exclude that it might be caused by other mechanisms. It is not an
unreasonable hypothesis that the same mechanism responsible
for the use-dependent asymmetry in the generalization of the
mean is responsible for the asymmetry in the generalization of
uncertainty. If this is true it happens in a way that is not obvious
to us and future research could try to address it.

Where priors come from and how they are represented are
fundamental questions in learning and behavior. As we never
experience the same situation twice, constructing priors depends
crucially on our ability to generalize. However, generalization in
both perception and action is a result of how the brain represents
the external world. In perception research, studies that hypothe-
size priors based on the statistics of natural scenes (Geisler et al.,
2001; Roth and Black, 2005; Burge et al., 2010; DiMattina et al.,
2012) generally assume certain invariances where global general-
ization occurs along many dimensions of the stimulus. When
calculating orientation priors, for instance, color and contrast are
assumed to be irrelevant and only the statistics over orientation
are considered important (Girshick et al., 2011). In movement
research, it is generally assumed that the system is invariant to the
content of the visual scene and that generalization only depends
on (angular) distance (Krakauer et al., 2000), velocity (Goodbody
and Wolpert, 1998), or the way an object is held (Ingram et al.,
2010; but see Taylor et al., 2013). For both perception and action,
the nature of the underlying representations determines the
shape of generalization, and experiments like the ones presented
here are a way at psychophysically addressing these.

References
Berniker M, Kording K (2008) Estimating the sources of motor errors for

adaptation and generalization. Nat Neurosci 11:1454 –1461. CrossRef
Medline

Berniker M, Voss M, Kording K (2010) Learning priors for Bayesian com-
putations in the nervous system. PLoS One 5:e12686. CrossRef Medline

Brayanov JB, Press DZ, Smith MA (2012) Motor memory is encoded as a
gain-field combination of intrinsic and extrinsic action representations.
J Neurosci 32:14951–14965. CrossRef Medline

Burge J, Fowlkes CC, Banks MS (2010) Natural-scene statistics predict how
the figure– ground cue of convexity affects human depth perception.
J Neurosci 30:7269 –7280. CrossRef Medline

Cisek P, Kalaska JF (2005) Neural correlates of reaching decisions in dorsal
premotor cortex: specification of multiple direction choices and final
selection of action. Neuron 45:801– 814. CrossRef Medline

Deneve S (2008) Bayesian spiking neurons I: inference. Neural Comput 20:
91–117. CrossRef Medline

Diedrichsen J, White O, Newman D, Lally N (2010) Use-dependent and
error-based learning of motor behaviors. J Neurosci 30:5159 –5166.
CrossRef Medline

DiMattina C, Fox SA, Lewicki MS (2012) Detecting natural occlusion
boundaries using local cues. J Vis 12(13):15. CrossRef Medline

Doya K, Ishii S, Pouget A, Rao RPN (2007) Bayesian brain: probabilistic
approaches to neural coding. Cambridge, MA: MIT.

Fernandes HL, Stevenson IH, Kording KP (2012) Generalization of stochas-
tic visuomotor rotations. PLoS One 7:e43016. CrossRef Medline

Fiser J, Berkes P, Orbán G, Lengyel M (2010) Statistically optimal percep-
tion and learning: from behavior to neural representations. Trends Cogn
Sci 14:119 –130. CrossRef Medline

Geisler WS, Perry JS, Super BJ, Gallogly DP (2001) Edge co-occurrence in
natural images predicts contour grouping performance. Vision Res 41:
711–724. CrossRef Medline

Georgopoulos AP, Ashe J, Smyrnis N, Taira M (1992) The motor cortex and
the coding of force. Science 256:1692–1695. CrossRef Medline

Girshick AR, Landy MS, Simoncelli EP (2011) Cardinal rules: visual orien-
tation perception reflects knowledge of environmental statistics. Nat
Neurosci 14:926 –932. CrossRef Medline

Gonzalez Castro LNG, Monsen CB, Smith MA (2011) The binding of learn-
ing to action in motor adaptation. PLoS Comput Biol 7:e1002052.
CrossRef Medline

Goodbody SJ, Wolpert DM (1998) Temporal and amplitude generalization
in motor learning. J Neurophysiol 79:1825–1838. Medline

Hinton GE, Sejnowski TJ (1983) Optimal perceptual inference. In: Proceed-
ings of the IEEE computer society conference on computer vision and
pattern recognition, pp 448 – 453.

Hoyer P, Hyvärinen A (2003) Interpreting neural response variability as
Monte Carlo sampling of the posterior. In: Advances in neural informa-

Fernandes et al. • Generalization of Prior Uncertainty J. Neurosci., August 20, 2014 • 34(34):11470 –11484 • 11483

http://dx.doi.org/10.1038/nn.2229
http://www.ncbi.nlm.nih.gov/pubmed/19011624
http://dx.doi.org/10.1371/journal.pone.0012686
http://www.ncbi.nlm.nih.gov/pubmed/20844766
http://dx.doi.org/10.1523/JNEUROSCI.1928-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23100418
http://dx.doi.org/10.1523/JNEUROSCI.5551-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20505093
http://dx.doi.org/10.1016/j.neuron.2005.01.027
http://www.ncbi.nlm.nih.gov/pubmed/15748854
http://dx.doi.org/10.1162/neco.2008.20.1.91
http://www.ncbi.nlm.nih.gov/pubmed/18045002
http://dx.doi.org/10.1523/JNEUROSCI.5406-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20392938
http://dx.doi.org/10.1167/12.13.15
http://www.ncbi.nlm.nih.gov/pubmed/23255731
http://dx.doi.org/10.1371/journal.pone.0043016
http://www.ncbi.nlm.nih.gov/pubmed/22916198
http://dx.doi.org/10.1016/j.tics.2010.01.003
http://www.ncbi.nlm.nih.gov/pubmed/20153683
http://dx.doi.org/10.1016/S0042-6989(00)00277-7
http://www.ncbi.nlm.nih.gov/pubmed/11248261
http://dx.doi.org/10.1126/science.256.5064.1692
http://www.ncbi.nlm.nih.gov/pubmed/1609282
http://dx.doi.org/10.1038/nn.2831
http://www.ncbi.nlm.nih.gov/pubmed/21642976
http://dx.doi.org/10.1371/journal.pcbi.1002052
http://www.ncbi.nlm.nih.gov/pubmed/21731476
http://www.ncbi.nlm.nih.gov/pubmed/9535951


tion processing systems (Becker S, Thrun S, Obermayer K, eds), pp 293–
300. Cambridge, MA: MIT.

Huang VS, Haith A, Mazzoni P, Krakauer JW (2011) Rethinking motor
learning and savings in adaptation paradigms: model-free memory for
successful actions combines with internal models. Neuron 70:787– 801.
CrossRef Medline

Ingram JN, Howard IS, Flanagan JR, Wolpert DM (2010) Multiple grasp-
specific representations of tool dynamics mediate skillful manipulation.
Curr Biol 20:618 – 623. CrossRef Medline

Kagerer FA, Contreras-Vidal JL, Stelmach GE (1997) Adaptation to gradual
as compared with sudden visuo-motor distortions. Exp Brain Res 115:
557–561. CrossRef Medline

Körding KP, Wolpert DM (2004) Bayesian integration in sensorimotor
learning. Nature 427:244 –247. CrossRef Medline

Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L (2007)
Causal inference in multisensory perception. PLoS One 2:e943. CrossRef
Medline

Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomo-
tor transformations for vectorial planning of reaching trajectories. J Neu-
rosci 20:8916 – 8924. Medline

Ma WJ (2010) Signal detection theory, uncertainty, and Poisson-like popu-
lation codes. Vision Res 50:2308 –2319. CrossRef Medline

Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with
probabilistic population codes. Nat Neurosci 9:1432–1438. CrossRef
Medline

Moran DW, Schwartz AB (1999) Motor cortical representation of speed and
direction during reaching. J Neurophysiol 82:2676 –2692. Medline

Pearson TS, Krakauer JW, Mazzoni P (2010) Learning not to generalize:
modular adaptation of visuomotor gain. J Neurophysiol 103:2938 –2952.
CrossRef Medline

Rickert J, Riehle A, Aertsen A, Rotter S, Nawrot MP (2009) Dynamic encod-
ing of movement direction in motor cortical neurons. J Neurosci 29:
13870 –13882. CrossRef Medline

Roth S, Black MJ (2005) On the spatial statistics of optical flow. In: IEEE
International Conference on Comput Vision, Vol. 1, pp 42– 49.

Sahani M, Dayan P (2003) Doubly distributional population codes: simul-

taneous representation of uncertainty and multiplicity. Neural Comput
15:2255–2279. CrossRef Medline

Shadmehr R (2004) Generalization as a behavioral window to the neural
mechanisms of learning internal models. Hum Mov Sci 23:543–568.
CrossRef Medline

Shepard RN (1987) Toward a universal law of generalization for psycholog-
ical science. Science 237:1317–1323. CrossRef Medline

Soltani A, Wang XJ (2010) Synaptic computation underlying probabilistic
inference. Nat Neurosci 13:112–119. Medline

Tassinari H, Hudson TE, Landy MS (2006) Combining priors and noisy
visual cues in a rapid pointing task. J Neurosci 26:10154 –10163. CrossRef
Medline

Taylor JA, Ivry RB (2013) Context-dependent generalization. Front Hum
Neurosci 7:171. CrossRef Medline

Taylor JA, Hieber LL, Ivry RB (2013) Feedback-dependent generalization.
J Neurophysiol 109:202–215. Medline

Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive
combination of motor primitives. Nature 407:742–747. CrossRef
Medline

Turnham EJ, Braun DA, Wolpert DM (2012) Facilitation of learning in-
duced by both random and gradual visuomotor task variation. J Neuro-
physiol 107:1111–1122. CrossRef Medline

Verstynen T, Sabes PN (2011) How each movement changes the next: an
experimental and theoretical study of fast adaptive priors in reaching.
J Neurosci 31:10050 –10059. CrossRef Medline

Vilares I, Kording K (2011) Bayesian models: the structure of the world,
uncertainty, behavior, and the brain. Ann N Y Acad Sci 1224:22–39.
CrossRef Medline

Wei K, Körding K (2009) Relevance of error: what drives motor adaptation?
J Neurophysiol 101:655– 664. Medline

Wu S, Chen D, Niranjan M, Amari S (2003) Sequential Bayesian decoding
with a population of neurons. Neural Comput 15:993–1012. CrossRef
Medline

Zemel RS, Dayan P, Pouget A (1998) Probabilistic interpretation of popu-
lation codes. Neural Comput 10:403– 430. CrossRef Medline

11484 • J. Neurosci., August 20, 2014 • 34(34):11470 –11484 Fernandes et al. • Generalization of Prior Uncertainty

http://dx.doi.org/10.1016/j.neuron.2011.04.012
http://www.ncbi.nlm.nih.gov/pubmed/21609832
http://dx.doi.org/10.1016/j.cub.2010.01.054
http://www.ncbi.nlm.nih.gov/pubmed/20346672
http://dx.doi.org/10.1007/PL00005727
http://www.ncbi.nlm.nih.gov/pubmed/9262212
http://dx.doi.org/10.1038/nature02169
http://www.ncbi.nlm.nih.gov/pubmed/14724638
http://dx.doi.org/10.1371/journal.pone.0000943
http://www.ncbi.nlm.nih.gov/pubmed/17895984
http://www.ncbi.nlm.nih.gov/pubmed/11102502
http://dx.doi.org/10.1016/j.visres.2010.08.035
http://www.ncbi.nlm.nih.gov/pubmed/20828581
http://dx.doi.org/10.1038/nn1790
http://www.ncbi.nlm.nih.gov/pubmed/17057707
http://www.ncbi.nlm.nih.gov/pubmed/10561437
http://dx.doi.org/10.1152/jn.01089.2009
http://www.ncbi.nlm.nih.gov/pubmed/20357068
http://dx.doi.org/10.1523/JNEUROSCI.5441-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19889998
http://dx.doi.org/10.1162/089976603322362356
http://www.ncbi.nlm.nih.gov/pubmed/14511521
http://dx.doi.org/10.1016/j.humov.2004.04.003
http://www.ncbi.nlm.nih.gov/pubmed/15589621
http://dx.doi.org/10.1126/science.3629243
http://www.ncbi.nlm.nih.gov/pubmed/3629243
http://www.ncbi.nlm.nih.gov/pubmed/20010823
http://dx.doi.org/10.1523/JNEUROSCI.2779-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/17021171
http://dx.doi.org/10.3389/fnhum.2013.00171
http://www.ncbi.nlm.nih.gov/pubmed/23653603
http://www.ncbi.nlm.nih.gov/pubmed/23054603
http://dx.doi.org/10.1038/35037588
http://www.ncbi.nlm.nih.gov/pubmed/11048720
http://dx.doi.org/10.1152/jn.00635.2011
http://www.ncbi.nlm.nih.gov/pubmed/22131385
http://dx.doi.org/10.1523/JNEUROSCI.6525-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21734297
http://dx.doi.org/10.1111/j.1749-6632.2011.05965.x
http://www.ncbi.nlm.nih.gov/pubmed/21486294
http://www.ncbi.nlm.nih.gov/pubmed/19019979
http://dx.doi.org/10.1162/089976603765202631
http://www.ncbi.nlm.nih.gov/pubmed/12803954
http://dx.doi.org/10.1162/089976698300017818
http://www.ncbi.nlm.nih.gov/pubmed/9472488

	The Generalization of Prior Uncertainty during Reaching
	Introduction
	Materials and Methods
	Results
	Experiment 1
	Experiment 2
	Models
	Experiment 3
	Discussion

	References

