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Abstract—Current multi-electrode techniques enable the si-
multaneous recording of spikes from hundreds of neurons. To
study neural plasticity and network structure it is desirable to
infer the underlying functional connectivity between the recorded
neurons. Functional connectivity is defined by a large number of
parameters, which characterize how each neuron influences the
other neurons. A Bayesian approach that combines information
from the recorded spikes (likelihood) with prior beliefs about
functional connectivity (prior) can improve inference of these
parameters and reduce overfitting. Recent studies have used
likelihood functions based on the statistics of point-processes
and a prior that captures the sparseness of neural connections.
Here we include a prior that captures the empirical finding that
interactions tend to vary smoothly in time. We show that this
method can successfully infer connectivity patterns in simulated
data and apply the algorithm to spike data recorded from
primary motor (M1) and premotor (PMd) cortices of a monkey.
Finally, we present a new approach to studying structure in
inferred connections based on a Bayesian clustering algorithm.
Groups of neurons in M1 and PMd show common patterns of
input and output that may correspond to functional assemblies.

Index Terms—functional connectivity, motor cortex, Bayesian

I. INTRODUCTION

W ITH current multi-electrode techniques electrophysiol-
ogists can record spikes from many neurons simul-

taneously. One of the main objectives of these studies is to
understand how groups of neurons process information and in-
teract with one another [1]. Characterizing these relationships
is difficult since we can only record from a tiny fraction of all
relevant neurons, and each neuron is interacting with countless
unobserved neurons. However, statistical methods for analyz-
ing these interactions, even in small populations, are proving
to be useful for understanding neural circuitry and processing
[2]–[4]. Improving these methods has the potential to provide
further insights into neural processing [5] and, particularly,
neural plasticity, since behavioral training, pharmacological
manipulations, and injury can cause distributed changes over
many neurons [6].

For several decades, neurophysiologists have studied how
the CNS processes information by studying the correlations
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between neurons [5], [7]. These analyses rely on the idea
that there are functional interactions between neurons, ”mech-
anisms by which the firing of one neuron influences the
probability of firing of another neuron” [8]. These interactions
can be direct (monosynaptic) or indirect (polysynaptic), exci-
tatory or inhibitory, any mechanism that induces correlations
between recorded spike trains. This is a broad definition,
but the goal of these studies is to detect and interpret such
interactions. Early methods focused on analyzing pairs of
neurons using time series techniques (e.g. cross-correlograms
[8] or joint peri-stimulus time histograms [9]). These methods
revealed a great deal about the interactions between cortical
and subcortical structures [10] and the local interactions in
visual [11], [12] and auditory cortices [13], [14]. The main
difficulty that these (and virtually all other) approaches to
functional connectivity face, is that correlations between two
neurons can be caused by both interactions between observed
neurons as well as unobserved common inputs, such as those
arising from external covariates (e.g. movements or stim-
uli). By studying the correlations across time under different
stimulus conditions the effects of functional interactions and
common input can be roughly distinguished [9], [15], [16].
Analyzing the shape of the cross-correlations can reveal the
signature of a direct connection. However, in many practical
situations such techniques rely heavily on the experience of the
experimenter. These studies have shown the need for general
methods that combine prior knowledge with experimental data
in a formalized way.

Consider two examples that have been used in interpret-
ing results from correlation-based methods and that illustrate
where these methods can be improved upon. First, consider
a situation with three neurons (A, B and C), where A is
connected to B and B is connected to C. In this case there
will be significant correlation between the activities of all three
neurons. Describing the pair-wise interactions alone will not
pick up on the fact that interactions between A and C are
mediated by B, although this is something we would certainly
like to know. Now, consider a case where neuron A projects to
both neurons B and C. Here, B and C receive common input
from A which we would like to remove from our estimates of
the interaction between B and C. Again, the methods described
above will not pick up on this, unless A is highly correlated
with an external covariate which is being manipulated. These
examples are necessarily simplistic, but the point is that pair-
wise methods generally provide only an incomplete picture of
the connections between several neurons.

A few methods, such as gravitational clustering [17] and
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spike pattern classification methods [18], have made steps
towards estimating functional connectivity between many neu-
rons. Here we focus on a class of methods pioneered by
Chornoboy et al. [19] and Brillinger [20]. Instead of study-
ing correlations between neurons (descriptive statistics), they
proposed a model-based approach that uses the maximum
likelihood (ML) paradigm. The connections between every
pair of neurons are modeled simultaneously. The model param-
eters are then optimized to provide the most likely description
of the observed spiking. The key feature of model-based
approaches is that they allow correlations between neurons to
be ”explained away” as side-effects of more direct or global
activity. The first example above highlights the problem pair-
wise methods face in detecting indirect connections. Model-
based methods allow the indirect connection between A and
C to be explained away as two (more direct) connections
from A to B and from B to C. This can occur with any
number of observed intervening neurons. The second example
above highlights the problem of distinguishing common input
from functional interactions without relying on the shape
and latency of correlations. Taking the common input into
account using the activity of the other neurons, or by in-
cluding external covariates in the model [21], allows many
more interactions to be explained away. Previously, functional
connectivity measured the effect of one neuron’s spiking on
the probability of a second neuron’s spiking, not considering
the other neurons. Model-based methods, instead, characterize
the effect spikes from one neuron have on the firing of another
taking into account the firing and interactions of all other
observed neurons. A more precise, mathematical explanation
is given in the following section.

One common model of how external covariates and other
neurons influence spiking is the point-process neural encoding
or network likelihood model [19], [20], [22]. This model has
been used to describe how information is processed in ensem-
bles of hippocampal place cells [22] and in motor cortex [21].
Moreover, when coupled with methods from generalized linear
models (GLMs) these types of model-based methods have the
potential to yield powerful, efficient descriptions of neural
coding [21], [23]–[25]. In this paper we address the issue that
ML methods, by themselves, often over-fit the data. This gets
to be a problem when many parameters are inferred from a
limited set of data. For example, if we record from 100 neurons
there are 10,000 possible connections between neurons, and
thus, a huge number of temporal interaction kernels that need
to be estimated. This number of free parameters may easily
be larger than the number of recorded spikes per neuron. A
common way of improving such estimates is to incorporate
prior knowledge about the nature of the inference problem,
using Bayes rule and calculating maximum a posteriori (MAP)
estimates [25], [26].

In this paper we utilize two pieces of prior knowledge that
help to avoid overfitting and clarify connectivity in datasets
with many neurons. One piece of prior knowledge that we
have about the network is that we expect the true connec-
tivity to be sparse. In other words, we expect each neuron
to interact with only a relatively small number of neurons.
Studies of pairs [27] and small ensembles of neurons [28]

imply that, indeed, the functional connectivity in the nervous
system is sparse, even among neurons with similar response
properties. This prior is similar to that suggested by Paninski
et al. [23], [29] and recently used to analyze retinal spike
data [30]. Secondly, previous studies have shown that the
influence of one neuron on another tends to vary smoothly
over time [31]. Current model-based methods represent the
interactions between cells by small (∼100ms) spatio-temporal
kernels. There are no constraints on the temporal structure
of interactions. We extend these methods by incorporating a
prior, justified by physiological results, that favors smoothly
varying kernels. This idea has been used in a slightly different
context for the representation of receptive fields [32], [33].
Adding priors allows principled model regularization and
smoothing and, thus, reduces the amount of data needed to
accurately fit connectivity models [34], [35]. This may be
useful, since experimenters are often limited in the amount and
quality of data they can record, for example by the stability
of the recorded neurons. Additionally, since the number of
parameters in these models increases quadratically with the
number of neurons, priors should be useful in explaining
connectivity in large ensembles of neurons, even when long
recording lengths are available.

Several techniques have been developed for modeling multi-
neuron spike-train data and inferring functional connectivity
[23], [36]–[39] - clarifying the decoding problem [24], [25],
[29], the role of common input [40], and the role of higher-
order interactions [41], [42]. However, the concept of func-
tional connectivity itself remains somewhat elusive. One useful
way of thinking about these connections was introduced by
Aertsen et al. [43]. Aertsen et al. realized that it is impossible
to uniquely determine the underlying, ”true” connectivity of a
neural circuit without ”exhaustive enumeration of all states of
all elements.” What we infer is an ”abbreviated description of
an equivalent class of neuronal circuits.” Given the neurons we
record from, the functional connectivity is a reconstruction of
the circuit that best reproduces the observed spikes. Although
the biological significance of these functional reconstructions
is not entirely clear, their structure captures important proper-
ties about the organization of biological neural networks and
they have the potential to provide insights into the structure
of these networks.

One of the primary hypotheses about network structure is
that neurons, especially cortical neurons, form groups or as-
semblies characterized by similar stimulus-response properties
[44], [45]. This refers not only to localized cortical columns,
but also to functional assemblies that may be more spatially
distributed. It has been suggested that these assemblies tend
to be highly connected within a group and tend to have
relatively few connections to neurons in other groups [46].
We expect neurons in the same assembly to have similar
incoming and outgoing connections, either to specific neurons
or to other assemblies. These assemblies are indicative of
redundant coding, and have been hypothesized to play a vital
role in perception and action, improving control of muscle
groups [47] and facilitating learning [48]. A few studies have
attempted to find such assemblies using other methods (e.g.
mutual information) [49], [50]. Here we show how algorithms
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that infer functional connectivity can be used to directly
analyze the extent to which the idea of assemblies helps in
understanding neural computation.

In this paper we will first introduce our model: the like-
lihood function and priors that we are using. We then test
our method on simulated ensembles of neurons. We apply our
method to a large dataset recorded from the motor cortex (M1
and PMd) of a sleeping monkey, using time-rescaling and
cross-validation techniques to evaluate model performance.
Then we study the structure of the inferred connections
by applying infinite relational model (IRM) clustering [51]
- a Bayesian technique, which can perform clustering on
asymmetric, weighted relationships and automatically finds an
optimal number of clusters. Lastly, we discuss the implications
of this technique for future research.

II. THEORY

To infer functional connections between neurons we con-
struct a likelihood function, combine it with prior knowledge
over the connections, and calculate the maximum a posteriori
(MAP) connectivity estimates. These estimates are calculated
using a coordinate ascent algorithm with additional parameters
to represent connection ”weights.” Then, using these weights,
we analyze the structure of ensembles with an algorithm for
clustering directed graphs.

A. Generative model: Likelihood derived from a point process
To describe the connections among neurons we follow a

point-process neural encoding or network likelihood model
[19], [20], [22]. In this model each cell has a spontaneous
firing rate, αi,0, and the interactions between cells are modeled
as a set of spatio-temporal kernels. For each neuron i, the
effect of neuron c spiking at lag m is parameterized by αi,c,m.
Each connection is modeled over a history window, Ht, M
steps into the past. For a network with C cells this gives
C(CM +1) model parameters that need to be estimated. The
process Ic,m(t) provides a count of the number of spikes fired
by cell c at lag m. Using this counting process and estimates
of αi,c,m, the conditional intensity function (the instantaneous
firing rate of neuron i) is given by a generalized linear model
(GLM),

λi(t | αi, Ht) = exp

(
αi,0 +

C∑
c=1

M∑
m=1

αi,c,mIc,m(t)

)
. (1)

and we assume that the number of spikes in any given time
step is drawn from a Poisson distribution with this rate [52],
[53]. This creates a doubly stochastic Poisson process (Cox
process). The log-likelihood of the model parameters α is then

log p(N0:T | α) =
C∑
i=1

{∫ T

0

log λi(t | αi, Ht) dNi(t)

−
∫ T

0

λi(t | αi, Ht) dt

}
, (2)

where Ni(t) =
∫ t
0
Ii,0(τ)dτ represents the location of every

spike from cell i, and N0:T represents the spike trains of all
cells. Details and a derivation have been previously published
[22], [53].
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Fig. 1. The generative model. In this model hyperparameters inform the
sparseness and smoothness of connections between neurons. The connections
are filters which describe the effect of one neuron’s spiking on another. These
connections, along with a baseline firing rate, produce conditional intensities,
and conditional intensities generate spikes through a doubly-stochastic Poisson
process.

B. Generative model: Priors

To include priors over the spatio-temporal kernels we embed
the point-process framework in a larger generative model
(figure 1). For each of the potential connections a connection
strength Wi,c is defined, drawn i.i.d. from the following
distribution

p(Wi,c) = exp(−Wi,c), (3)

where Wi,c ≥ 0. This expression incorporates our under-
standing that most connections will be weak while some
connections will be very strong.

In addition to this sparseness prior over the weight param-
eters, we assume that the spatio-temporal kernels themselves
tend to be sparse and that they tend to vary smoothly over
time. We incorporate these ideas by using a prior over each

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 9, 2008 at 14:17 from IEEE Xplore.  Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

connection:

p(αi,c |Wi,c) =
1
Zi,c

exp

(
−
a
∑M
m=2 (αi,c,m − αi,c,m−1)

2

W 2
i,c

−
b
∑M
m=1 |αi,c,m|
Wi,c

)
. (4)

The first term in the exponential captures the idea of smooth-
ness. Note that this smoothness depends on the strength of
the connection - strong connections may vary widely over
time while weak connections will be unlikely to vary much.
That is, the allowed fluctuations scale with the strength of
the connection. The second term in the exponential links
our notion of sparseness directly to the model parameters α.
Not only should the connections weights be small, but the
kernels should also go to zero. The partition function Zi,c
is a normalizing factor, which becomes important when we
attempt to learn the model parameters, since it is a function
of W . a and b are free parameters that will allow us to vary
1) how much weight the prior has relative to the likelihood
and 2) the balance between smoothness and sparseness. The
model parameters are fairly robust to the choice of these
hyperparameters, and in practice, we can optimize a and b
using a form of cross-validation (see below).

As Sahani and Linden [32] point out, in some sense, these
two priors act in opposition. A sparseness prior leads to
isolated non-zero values, while a smoothness prior is designed
to prevent these sorts of isolated points. Here, unlike the
ASD/RD framework, which solves this problem by applying
the sparseness prior in a basis defined by the smoothness prior,
we add a parameter W , which explicitly links the sparseness
and smoothness terms. Large values of W allow non-sparse,
non-smooth solutions, while small values of W force the
solutions to be both sparse and smooth, essentially driving
the entire kernel to zero.

C. Inference

The inference problem is to recover the spontaneous firing
rates, αi,0, the spatio-temporal kernels, αi,c,m, and the weight
parameters Wi,c from the spikes alone. In ML estimation
this consists of finding the set of α that maximize (eq 2).
In MAP estimation we add prior terms to the objective
function. Adding the priors described above for sparseness
and smoothness, we now have an objective function which
captures the posterior of the model parameters given the data

p(α,W | N0:T ) ∝ p(N0:T | α,W ) p(α,W ) (5)
= p(N0:T | α) p(α |W ) p(W )

and the log-posterior is then

log p(α,W | N0:T ) ∝ log p(N0:T | α)

−
C∑
i=1

C∑
c=1

(
a
∑M
m=2 (αi,c,m − αi,c,m−1)

2

W 2
i,c

+
b
∑M
m=1 |αi,c,m|
Wi,c

+ logZi,c +Wi,c

)
. (6)

Finding the parameters that maximize this function gives
the MAP estimates of the modeled connectivity. Note that
p(N0:T | α) is in the exponential family for this model
so, without a prior, α can be estimated using traditional
generalized linear model (GLM) methods such as iterative
reweighted least squares (IRLS) [21], [25]. Here, however, we
use a different method - a simple coordinate ascent algorithm,
which alternates between updating the kernels, α, holding the
weights fixed and updating the weights, W , holding α fixed.
Incorporating priors in this framework is straightforward, and
the algorithm converges quickly.

To update the kernels we use the objective function and the
derivative of the objective function with respect to αi,c,m. We
can optimize these parameters efficiently, in parallel, using the
RPROP (resilient propagation) algorithm [54].

To update Wi,c we solve

d

dW
p(α,W | N0:T ) = 0. (7)

We were unable to find a closed-form solution for the
partition function. However, we only need an accurate ex-
pression for d

dWi,c
logZi,c. We can upper-bound the partition

function by assuming that a � b or b � a. In these
cases we can approximate p(α | W ) as a multivariate
Gaussian or multivariate Laplace distribution. And Zi,c ≤
min(

(
π
2a

)M/2
WM
i,c ,
(

2
b

)M
WM
i,c ). In these bounded cases, as

well as empirically, the partition function takes the form
Zi,c = kWM

i,c with some constant k that depends on the hyper-
parameters a and b. Although, the exact value of the constant k
is unclear we can still solve (6), since d

dWi,c
logZi,c ≈M/W .

In this approximation (6) is a cubic equation (with one
positive root) that can be solved analytically. We compared this
approximation to the exact value, calculated by numerically
integrating Z, for a range of hyperparameter and weight values
and found that it is accurate to 6 ± 0.7%. More importantly,
the final estimates found using this approximation are close to
the true MAP estimates, since the smoothness and sparseness
terms, not the partition function term, tend to determine
the curvature of the log-posterior near the maximum. L1
regularization over α and W pushes many connections exactly
to zero. Our method thus recovers a sparse connectivity matrix
without post hoc pruning of the connections.

To optimize the hyperparameters we need a way of assessing
how good our estimate of the kernels is as a function of the
hyperparameters or, alternatively, of how good the model is
at explaining the data. To do so we use cross-validation and
implicitly have to assume stationarity. These two ideas lead to
different algorithms, each motivated by different objectives. To
measure how well the model, with given hyper-parameters,
generalizes to new spikes we use the cross-validated log-
likelihood. To measure how good the estimate of the kernels
is, we use the following procedure. ML estimation yields
kernels that are noisy but not biased by either the sparseness
or smoothness prior. By maximizing the correlation coeffi-
cient between MAP estimates in one segment and the noisy
”true” examples from other segments we can infer which
hyperparameters will give us the best estimate of the kernels.
These two procedures have different objectives and thus do not
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need to yield the same values. For example, if the observed
signal is varying very slowly (in the case of imaging data,
for instance) then a radically smoothing hyperparameter may
lead to high likelihoods while leading to very biased kernels.
In this paper we focus on using correlation coefficients as a
measure of model quality. The log-likelihood method has the
advantage that only the data likelihood is considered and may
be preferable in a setting where we are interested in a wide
range of variables as well as their ability to predict data.

D. Inferring Structure

After inferring connectivity, in addition to the spatio-
temporal kernels describing interactions between neurons, we
have a matrix of connection ”weights”. This matrix can be
thought of as a directed graph where nodes represent neurons
and edges, if they exist, represent connections between neurons
with some weight. One question we can now ask is - is there
any structure in this graph? Kemp et al. [51] have recently
introduced an algorithm for clustering these types of relation
graphs called the Infinite Relational Model. Unlike k-means
or many other clustering algorithms, the IRM technique is
designed to operate on relational graphs, and the complexity
of the clustering (e.g., the number of clusters) is not predeter-
mined. This model uses the Chinese Restaurant Process prior
(CRP) and a Markov Chain Monte Carlo (MCMC) algorithm
to determine the number of clusters and cluster memberships.
Thus, this method can automatically find salient structure in
the connectivity matrix.

Ultimately, the IRM algorithm samples over the number of
clusters and cluster memberships and attempts to find blocks
of densely connected neurons. The identified clusters represent
groups of neurons with similar patterns of incoming and
outgoing connections, and these clusters may have functional
or anatomical significance.

III. RESULTS

A. Simulated data

To test the effectiveness of our method we simulated 4,
10, and 100-neuron networks with spatio-temporal kernels
drawn from the generative model. We added the constraint
that cells had inhibitory connections to themselves and were
connected to other cells with a probability of 0.25. For self-
connections the starting point was set to a negative constant,
to mimic a refractory period. All other end-points were fixed
at 0 (an example from a 4 cell network is shown in figure
1, spatio-temporal kernels). If Wi,c > 0 the time course of
the connection was determined by a Gaussian random walk
with fixed endpoints and variance 2W 2

i,c. We generated spikes
using the point-process model with the conditional intensity
function given in (eq 1) and simulated up to 1hr of spike
trains with each cell having a spontaneous firing rate of 5 Hz.
The conditional intensity was calculated at 1ms resolution.

Using these simulated spikes we infer a connectivity matrix
and a set of spatio-temporal kernels (figure 2a). Adding priors
over sparseness and smoothness greatly improves the estimates
by avoiding overfitting when there are relatively few spikes

(< 3000/cell). Figure 2b shows results from a simulated 10-
neuron network as a function of recording length (i.e. number
of spikes). Figure 2b (top) shows the cross-validated log-
likelihood of the model parameters given 60s of test data. Fig-
ure 2b (bottom) shows the correlation coefficients between the
recovered spatio-temporal kernels and the simulated, ”ground-
truth” connections.

The MAP estimates provide the best reconstructions of
the simulated connectivity, and ML estimates approach this
accuracy as the number of spikes increases, since they are
no longer overfitting a small set of spikes. Similar results
were obtained for 100-neuron networks, but the correlation
coefficients tend to be somewhat smaller due to the fact
that we are estimating many more parameters. Adding priors
successfully set kernels for which there was no connection to
zero without using a secondary criterion (such as the AIC/BIC
used in [22]).

B. Data from monkey M1 and PMd
The experimental data was collected from a sleeping

Macaca mulatta monkey. The animal had two microelectrode
arrays: one implanted in the primary motor cortex (M1) and
one implanted in dorsal premotor cortex (PMd). The arrays
were composed of 100 silicon electrodes arranged in a square
grid (Cyberkinetics Neurotechnology Systems, Inc.). 75 neu-
rons from M1 and 108 neurons from PMd were discriminated.
The neuronal signals recorded were classified as single- or
multi- unit signals based on action potential shape, and inter-
spike intervals less than 1.6 ms. Spike sorting was performed
by manual cluster cutting. In this way we obtained a dataset
with which to characterize the functional connectivity between
a large number of neurons. Local field potentials indicated that
our data included multiple stages of slow wave sleep and some
periods of REM (as measured by eyetracking). All animal use
procedures were approved by the institutional animal care and
use committee at the University of Chicago. See [55] for a
description of implantation and recording procedures.

In experimental data the ground truth connectivity is un-
known. However, we can validate our connectivity estimates
by segmenting the data and cross-validating. We split the data
into 9 segments, 20 minutes each, and analyzed connectivity
using a 5ms bin size. Figure 3a shows a subset of typical
spatio-temporal kernels inferred from this data. Following the
ideas discussed above we optimized the hyperparameters, a
and b, using two distinct measures: the cross-validated log-
likelihood (eq 2) and the correlation coefficient between MAP
estimates and ML estimates from other segments. Figure 3b
shows these two measures, as well as the sparseness, as a func-
tion of the hyperparameter b (at the optimal a value). Maximiz-
ing cross-validated log-likelihood or the correlation coefficient
between MAP and ML estimates provides a principled way
of choosing our hyperparameters. The correlation coefficient
tends to set more connections to zero. For large numbers of
neurons only a small fraction of connection weights are non-
zero at the optimal hyperparameter values, ∼ 4% in our data
(figure 3b). The cross-validated log-likelihood, on the other
hand, is maximized when ∼ 35% of connection weights are
non-zero.
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Fig. 2. Reconstructing spatio-temporal kernels from simulated data. (a) A typical reconstruction of the interactions in a simulated 4 cell network at 1 ms
resolution. (b) Cross-validated log-likelihood (top, N=200) and correlation coefficients (bottom, N=10) between reconstructions and ground truth connectivity
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the hyperparameter b (top). The average correlation coefficient between MAP estimates from one segment and ML estimates from other segments (bottom).

The connections themselves have similar properties to those
found in rat hippocampal cells [22]. Neurons interact with
themselves with a refractory period followed by an excitatory
rebound, and other connections, though fairly rare, tend to be
weakly excitatory. Since ML estimates have no constraints on
the smoothness of kernels, neurons with low spike rates tend to
have especially noisy interactions. Using priors, these spurious
connections are set to zero. The spatio-temporal kernels and
connection weights, W , were well correlated across segments.
There was 88% agreement on the existence of connections
between segments, on average, and R = 0.72 correlation

between the weights themselves.
To assess the accuracy of our model in predicting spikes

we also used goodness-of-fit tests based on the time-rescaling
theorem [56]. In this test, the integral of the conditional
intensity function over each inter-spike interval (z), should
be drawn from a uniform distribution after rescaling (see [7],
[21] for more details). KS-tests for the best predicted neuron,
worst predicted neuron, and a typical neuron are shown in
figure 4a. The sorted KS-statistics (the supremum of the point-
wise differences between the CDF of z and the CDF for the
uniform distribution) for the entire ensemble are shown in 4b.
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KS-tests for the best predicted, worst predicted, and a typical neuron (using
test data). (b) The sorted KS-statistics for all neurons modeled using ML,
MAP, and an uncoupled model (refractory effects only). The upper panel
shows results from training data, and the lower panel is test data. Smaller
KS-statistics correspond to better spike predictions.

Smaller KS-statistics correspond to better spike predictions.
In the majority of cells, fitting connections between neurons

provides better spike predictions than modeling refractory
effects alone (uncoupled model, ML estimates). However, in
some cases ( 20% of cells), ML estimates yield worse spike
predictions. These cells tend to have low firings rates (0.4
Hz on average compared to an average of 3.2 Hz in the full
population), and the inaccuracy in predicting spikes seems
to be due to the fact that the model is overparamaterized.
Spurious connections to these neurons can have a strong effect
on the conditional intensity. MAP estimates reduce overfitting
and improve spike predictions by removing these spurious
connections. We can also look at how these models generalize
to test data. ML estimates predict spikes better on training
data than on the test data. MAP estimates, on the other hand,
predict spikes equally well on both datasets.

C. Clustering results

We applied the Infinite Relational Model clustering algo-
rithm to the inferred connection weights from each 20 minute
segment. IRM can cluster using binary or continuous weight
relationships. We analyzed results from both methods, and
found that continuous weight matrices generated clusters that
were much more ambiguous than those from the binary matri-
ces, with many more clusters and less distinct clusters. Since
we are primarily interested in identifying distinct functional
clusters, we used the binary weights for most of the analysis.
In this case, IRM clusters neurons based on the similarity of
their connections; neurons in these clusters need not have the
same type or strength of interactions but only project to and
receive projections from similar groups of neurons. Figure 5
shows the typical binary connection weights before and after
clustering for one segment of the data with hyperparameter
values that left approximately 30% of all connections (for
visual clarity). Note that even in the unclustered weight matrix
strong asymmetries are visible between M1 (neurons 1-75)
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Fig. 5. Clustering results from real data. (a) The unclustered connection
weights recovered using our model. Cells 1-75 were recorded from PMd.
Cells 76-183 were recorded from M1. (b) MAP estimate of the clusters from
the IRM using binary (yes/no) connections. The neuron numbers have been
relabeled so that neurons in the same cluster are now adjacent. Blue squares
represent connections from PMd to PMd. Red squares represent connections
from M1 to M1. Black squares represent connections between the two areas,
and black lines represent cluster boundaries.

and PMd (neurons 76-183). The clustering algorithm has no
information about these labels. Using only the patterns of
inputs and outputs, neurons were well separated into groups
of M1 and PMd neurons (91± 1.6% separation). The cluster
assignments were stable between segments, and the cluster
assignments agreed approximately 75% of the time with
7.5± 1.0 clusters on average. These results were similar for a
range of hyperparameter values from 4% non-zero connections
(the value that maximizes the correlation coefficient between
MAP and ML estimates) up to 30% (the value that maximizes
the cross-validated log-likelihood).

Figure 6a shows the relationship between cluster assignment
and distance on each multi-electrode array. We used a permu-
tation test (randomizing the cluster assignments) to see if there
was any spatial component to the clusters. The distribution of
distances in both PMd and M1 were similar to the distributions
under random cluster assignments (dashed lines). For PMd the
inferred clusters were skewed to contain neurons 1-2 electrode
distances away from each other (p=0.015, KS test), while
the clusters inferred in M1 had much less spatial structure
(p=0.065, KS test). These results suggest that there is a weak
spatial component to these functional clusters, at least on the
scale of the inter-electrode distance (400µm). The fact that
neurons recorded from the same electrode have fairly low
probabilities of belonging to the same cluster further suggests
that cluster assignments are not simply an artifact of spike
sorting. Although, M1 and PMd neurons are assigned almost
exclusively to separate clusters there are many inter-cluster
interactions. These interactions tend to be fairly symmetric,
but neurons in PMd project to neurons in M1 with more
connections and with stronger connections than the neurons
in M1 project to PMd. Figure 6b shows the cumulative
distribution functions of connection weights from ML and
MAP estimates for each connection type.

IV. DISCUSSION

In this paper we have implemented a Bayesian extension
of previous model-based methods for estimating functional
connectivity from spikes. Adding priors over the temporal
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structure and sparseness of connections minimizes overfit-
ting spatio-temporal kernels, and weight parameters provide
regularized estimates of a scalar connectivity matrix. We
demonstrated the effectiveness of our model on simulated data
and applied the technique to multi-electrode array recordings
from M1 and PMd of a sleeping monkey. In simulation, MAP
estimation reconstructed the spatio-temporal kernels better
than ML alone, and both methods accurately predicted spikes
as measured by time-rescaling tests. In real data, the ML
inferred spatio-temporal kernels were similar to those found
by previous studies [22] and predicted spikes better than an
uncoupled model that used only refractory effects. Adding
priors further improved spike prediction, and allowed us to
examine the structure of the connectivity matrix.

Extending previous model-based methods to use priors, as
we have presented here, has several advantages. It is tempt-
ing to think that thresholding or using maximum likelihood
methods and smoothing after the fact would produce estimates
comparable to those found by our method. However, post
hoc thresholding or smoothing shifts the kernel estimates in
a subjective way that is not justified by statistical principles.
Including these features in the prior allows smoothing and
regularization to occur as part of the explaining away process
in model-based methods. There are a few principled ways to
make ML connectivity estimates sparse, such as the infor-
mation criteria (AIC/BIC) used by Okatan et al [22]. How-
ever, these methods become expensive to calculate, since the
estimates must be recalculated with each pruned connection
to be accurate. With MAP estimation, the smoothness and
sparseness of the connections are taken into account during
the optimization.

MAP estimation should allow neurophysiologists to make
these inferences using shorter recording lengths, at a higher
temporal resolution, and with more neurons. Cross-validating
across several segments of data provides a robust method
for assessing the overall accuracy of the estimation. There

are, however, several issues with estimating the uncertainty
in individual parameters not addressed in this paper. Knowing
how confident we are in each point of a connectivity estimate
is essential for characterizing these ensembles of neurons
and how they change over time. Paninski et al. [24], [25]
have recently shown that the Fisher information can be used
in some cases to approximate confidence intervals for MAP
connectivity estimates, and sampling methods or sensitivity
analysis may offer another method.

A similar model was recently developed by Rigat et al. [39].
This work used a similar sparseness prior under a slightly
different model and demonstrated that sampling techniques
can be used to estimate the full posterior distribution. This
model differs from the work presented here in that it represents
connections between neurons by a single parameter. In many
cases, this may be all the detail we need to explain the spiking
behavior, but here we are interested in the time-course of each
connection.

The importance of modeling the time-course of interactions
is apparent in the self-connections we observed. Many neurons
show complicated structure here such as a refractory period
followed by an excitatory rebound. By modeling the full
time-course, we can capture these dynamics in most cases.
However, in estimating connectivity in real data, both ML and
MAP, we did not always observe refractory periods in self-
connections. This seems to be due to the fact that we model
estimated spatio-temporal kernels at fairly low resolution, 5ms.
We could, of course, choose a smaller resolution, but we are
constrained by runtime. In choosing the binsize and number
of bins we want the resolution to be high enough to capture
refractory effects and also to have enough bins to capture the
full time-scale of the interactions. Runtime scales quadratically
with the number of parameters per connection so we are
somewhat limited in how many parameters we can use. One
option which has been previously suggested [25], [35], [57] is
to use different basis functions, such as a log-timescale or a
sum of decaying exponentials. Either of these methods should
allow us to resolve both refractory and interaction effects with
a small (∼ 10) number of parameters per connection.

Alternatively, we could increase the number of parameters
and simplify the model to balance runtime with better tem-
poral resolution. Methods based on the point-process neural
encoding model can be somewhat slow because the set of
spikes must be traversed with every iteration of the likelihood
calculation. We briefly examined approximating the nonlinear,
point-process model as a linear, Gaussian-noise model. In this
case, we can use the covariance matrices across the history, Ht,
as sufficient statistics to calculate the log-likelihood without
revisiting the spikes. This approximation produces the rotated
spike-triggered average (RSTA) [58], [59], which lacks many
of the nice properties of the point-process likelihood (asymp-
totic unbiasedness for instance) and does not predict spikes
well. However, the kernel estimates are well correlated with
true values in simulation and well correlated with ML esti-
mates in real data (using a GLM and point-process likelihood).
Adding priors to this approximate likelihood can provide
sparse, smooth connectivity estimates, and for large datasets
(many cells and/or long recording lengths) this approach has
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the advantage of being very efficient. Sacrificing a very precise
likelihood function for efficiency may thus be a promising
strategy for analyzing connectivity in these large datasets.

Perhaps the most important issue not directly addressed in
this work is how external covariates (stimuli or movements)
can be incorporated in the model and how they effect in-
teractions. Truccolo et al [21] presented this extension for
the maximum likelihood case, and Pillow et al. [24] have
recently extended this work. Treating the external covariates
as elements in the interaction network, one can infer interac-
tions between the covariate variables and neurons. External
covariates can obviously have large effects on the inferred
functional connectivity. In this paper, we used data from
a sleeping monkey to minimize these effects. Although the
functional connectivity of neural ensembles may well be very
different in the sleeping and awake brain, the inference and
clustering methods presented in this paper were designed to
analyze connectivity under any circumstances. The sparseness
and smoothness priors should be able to improve estimates of
the covariate-neuron interaction kernels as well.

Accurate methods for estimating connectivity in large datat-
sets allow us to look at a variety of questions about the
physiology of neural ensembles. We applied a Bayesian clus-
tering algorithm (IRM) to inferred connectivity matrices. The
patterns of input and output were well-conserved across the
cross-validated segments, and cells in PMd and M1 could
be distinguished from each other, with high accuracy, by
connectivity alone. Within PMd and M1 several groups of
neurons were clustered together. Using the spatial layout of
neurons on the array we have shown that the clustering is not
trivial; that is, it is not purely random or a result of bad spike
sorting. One hypothesis that we are currently pursuing is that
neurons in the same clusters may have similar relationships
to external covariates, that is, similar common input. We
are currently working on extending our Bayesian method to
include external covariates similar to those used by Truccolo
et al. [21] in the context of ML estimation.

Methods for accurately inferring functional connectivity
may be important for many issues. The Bayesian method
presented here, by including prior knowledge of sparseness
and smoothness, approaches a minimal description of the
connectivity given the observed spike trains. This may be
useful in identifying neuronal assemblies. Moreover, it raises
the possibility of tracking network interactions over time and
asking if connectivity patterns can be changed using motor
learning paradigms. Improved algorithms for the inference
of connectivity may thus be an important tool for future
neuroscientific and rehabilitation research.
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