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Abstract

Neurons in the sensory system exhibit changes in excitability that unfold over many time scales. These fluctuations produce
noise and could potentially lead to perceptual errors. However, to prevent such errors, postsynaptic neurons and synapses can
adapt and counteract changes in the excitability of presynaptic neurons. Here we ask how neurons could optimally adapt to
minimize the influence of changing presynaptic neural properties on their outputs. The resulting model, based on Bayesian
inference, explains a range of physiological results from experiments which have measured the overall properties and detailed
time-course of sensory tuning curve adaptation in the early visual cortex. We show how several experimentally measured short
term plasticity phenomena can be understood as near-optimal solutions to this adaptation problem. This framework provides
a link between high level computational problems, the properties of cortical neurons, and synaptic physiology.
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Introduction

The excitabilities of individual neurons fluctuate over timescales

ranging from milliseconds to hours due to effects such as electrical

stimulation [c.f. 1], neuromodulator concentrations [2] , oxygen

concentration [3] and circadian rhythms [4]. Such fluctuations are

widely observed in experimental recordings where spike trains are

collected over many trials in response to the same repeated

stimulus [c.f. 5]. If a neuron encodes features of stimuli in the

external world, such as the orientation of edges in the visual scene,

then such fluctuations are a major computational problem. The

firing rate of the neuron will depend not only on the properties of

the stimulus but also on the fluctuations in the excitability of

presynaptic neurons. Since such dependence would introduce

noise and bias into neural activities we would expect the nervous

system to correct for these fluctuations.

Here we consider adaptation as an estimation problem where

neurons attempt to produce stable responses in the presence

intrinsic fluctuations. That is, neurons must distinguish changes in

sensory stimuli from fluctuations in the excitability of presynaptic

neurons. This distinction may be possible if excitabilities and

sensory stimuli change over time in different ways. If these two

sources of fluctuations in presynaptic activity can be distinguished

the noise introduced by excitability fluctuations can be removed.

Given observations of presynaptic activity, we first consider the

statistical problem of estimating presynaptic excitability. We then

assume that, in order to reliably represent sensory drive, the

postsynaptic response is the presynaptic activity normalized by the

estimated excitability. In many ways this model provides an

instantiation of normalization theories of adaptation where the

nervous system attempts to correct low-level abnormal responses

[6]. In the framework we propose here, adaptation is the result of a

strategy to compute reliably by a nervous system that changes on

many timescales.

Using this excitability estimation framework we examine a

range of physiological adaptation phenomena. We examine short-

term synaptic depression at a single synapse and medium-term

tuning curve adaptation in early visual cortex. Experimental

results in both these domains are well-described by a model that

implements excitability estimation at the level of single synapses.

Recently, neuronal adaptation has been treated as a mechanism

that allows the nervous system to accurately represent stimuli in

the face of changes in the statistics of the external world [7,8]. At a

high-level, this approach would allow the nervous system to reduce

redundancy [9] and maximize the amount of sensory information

transmitted [10]. Rather than examining adaptation to extrinsic

changes, here we ask which adaptation rules would optimally

remove the effects of intrinsic fluctuations in pre-synaptic

excitability. We find that adaptation to intrinsic fluctuations can

reproduce experimental observations of a number of adaptation

phenomena. This raises the important possibility that adaptation

may be not only a mechanism for matching the statistics of the

external world, but also a means to perform stable computation

with a changing nervous system.

Results

The central problem in estimating intrinsic fluctuations in

excitability is that firing rate information is ambiguous. High firing

rates may occur because of strong sensory drive or, alternatively,
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because presynaptic neurons are highly excitable. In order to

adapt in a way that preserves sensory information, the nervous

system needs to resolve this ambiguity. Specifically, the nervous

system can use information about the way excitability typically

changes over time and information about the way sensory drive

typically changes over time to estimate presynaptic excitability

from presynaptic activity. Here we assume that excitability drifts

on multiple timescales around a steady state point [11] and that

sensory drive is sparse [12]. The multiple timescales of fluctuations

in excitability are meant to mimic the different sources of noise in

the nervous system, and we assume that each timescale contributes

equally to the total fluctuations in excitability. On short timescales

electrical activity and neuromodulators may affect excitability,

while on longer timescales excitability may be driven by oxygen

concentrations or hormones (Fig 1A). On the longest timescales

synaptic pruning, neuronal loss, and aging may all cause changes

in excitability. To distinguish between excitability and sensory

drive the way that excitability changes over time needs to differ

from the way sensory drive changes over time. Here we assume

that sensory drive is sparse and changes rapidly. This assumption

implies that neurons typically receive low drive and then, only

occasionally, receive very high drive (Fig 1B). Here we assume that

the total presynaptic activity is the product of this fluctuating

excitability and a sparse sensory drive, and that postsynaptic

neurons solve the statistical problem of estimating excitability in

order to remove it from their output.

Given observations of noisy presynaptic activity, our adaptation

model estimates the excitability of the presynaptic neuron on each

timescale using approximate Bayesian inference (an assumed density

filter). We then model the response of the postsynaptic neuron by the

observed presynaptic activity divided by the total estimate of the

presynaptic excitability (see Methods for details). The effect of this

optimal adaptation rule is to normalize the inputs from each

presynaptic neuron. Inputs from presynaptic neurons with high

excitability will tend to have low gain, while inputs from neurons with

low excitability will tend to have high gain. Under this rule, short term

increases in firing rate are typically attributed to high sensory drive

while prolonged increases in firing rates are attributed to high

excitability. In the following sections we ask how this excitability

estimation model of adaptation relates to synaptic properties and to

adaptation phenomena measured in primary visual cortex.

First, using a simulation of a single synapse, we illustrate that

estimating presynaptic excitability and normalizing postsynaptic

responses by these estimates makes neural output more stable

(Fig 2). That is, we show that using an excitability estimation

strategy to adapt to presynaptic fluctuations can reduce variability

in postsynaptic responses. To give a concrete example, we simulate

a presynaptic neuron whose excitability is fluctuating on multiple

timescales (Fig 2A). The response of the presynaptic neuron is then

the total excitability multiplied by a sparse sensory drive. Given

this presynaptic activity, we then use our excitability estimation

model to simulate the response of a postsynaptic neuron. With this

statistical structure, we can reliably estimate the total presynaptic

excitability, 7361% variance explained (Fig 2B). Importantly,

normalizing the response by the estimated fluctuations at each

time step gives a much more stable postsynaptic response to the

same sensory input than a model without adaptation (Fig 2C).

While a certain level of response variability may serve computa-

tional purposes [13,14], reducing response variability using such

an adaptation rule could prevent runaway variability that would

lead to perceptual errors [15].

At the level of individual synapses, what properties would be

required to approximate optimal adaptation? The adaptation rule

we present here, normalizing by estimated presynaptic excitability,

is based solely on statistical descriptions of how sensory drive and

presynaptic excitability change over time. However, one of the

main characteristics of this rule is that synaptic strength increases

slowly in the absence of presynaptic activity and decreases quickly

in the presence of presynaptic activity. These effects roughly

correspond to biophysical descriptions of synaptic depletion and

recovery. Indeed experimentally observed properties of short-term

synaptic depression [16] are accurately modeled by excitability

estimation (Fig 3A). Additionally, a prominent model [17] based

on synaptic depletion and recovery and calibrated with electro-

physiological results shows a very similar time-course to the one

Figure 1. An excitability estimation model. A) Examples of
fluctuations in excitability on multiple timescales. We assume that
excitability fluctuates due to multiple causes – both slowly fluctuating
(e.g. oxygen concentration) and quickly fluctuating (e.g. the activities of
neighboring neurons). B) Example of sensory drive. We assume that
sensory drive is sparse – non-zero values are relatively rare – and
independent from one time-step to the next. C) A schematic depicting
the relationship between the excitability, sensory drive, and presynaptic
activity. At each time presynaptic activity s is observed. We assume that
this activity is the product of the two hidden variables: sensory drive d
and excitability (gain) g. Here we assume that the excitability at each
time depends on the excitability at the previous time-step. Using this
model we can estimate excitability given observations of presynaptic
activity, and subsequently normalize postsynaptic responses by this
excitability to produce a more stable output.
doi:10.1371/journal.pone.0012436.g001

Bayesian Correction in Neurons
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predicted by our excitability estimation model (Fig 3B). Since the

biophysical model relies on precise spike timing, these EPSC

results shown the average response over many (1000) simulated

inhomogeneous Poisson spike trains. This firing rate response can

then be compared to the estimated excitability. Each of these

results was fit with one free parameter (a scaling factor). The other

parameters in the model (the timescales and variability for each

timescale) are fixed by the assumption that each timescale

contributes equally to the total variance. However, the fact that

the model can describe these data raises the possibility that the

seemingly counterproductive depletion of synaptic vesicles may

serve an important algorithmic purpose – allowing an unstable

nervous system to compute reliably.

In addition to neural responses at a single synapse, the excitability

estimation model may also be used to describe extracellular

responses to the repeated stimuli used in typical physiological

experiments. One particularly well studied system for this type of

experiment is primary visual cortex. Here, recent experiments have

found that orientation-selective neurons, when adapted with a

stimulus of one orientation, shift their preferred stimulus orientation

away from the adapting stimulus [18,19,20]. This kind of response

has been described in many neural recordings [18] as well as in

human psychophysics [21,22]. The excitability estimation model

naturally reproduces these repulsive tuning curve shifts in a simple

model network where each synapse implements the statistically

optimal adaptation rule described above.

Figure 2. Reducing response variability. A simulated neuron receives input from an orientation tuned neuron whose excitability is fluctuating.
A) Estimated pre-synaptic fluctuations on three timescales (slow tau = 5 min, intermediate tau = 500 ms, and fast tau = 50 ms). B) The total pre-
synaptic gain in this simulation and the optimal estimate given noisy observations of the pre-synaptic activity. C) The post-synaptic response –
presynaptic activity normalized by the estimated gain – to a single orientation with and without adaptation. Boxes denote the inter-quartile range;
whiskers denote 1.5 times the inter-quartile range. Outliers have been removed for clarity. By cancelling out fluctuations in pre-synaptic excitability
the adaptation model can substantially reduce response variability.
doi:10.1371/journal.pone.0012436.g002

Figure 3. Comparison with short-term synaptic depression data and previous model. A) Low-pass filtering with short-term synaptic
depression. Steady-state EPSC size (as a fraction of control) for real data, adapted from [16], (top) and the steady-state gain from the excitability
estimation model as the input is varied (bottom). B) A comparison of the EPSC magnitudes predicted by the Tsodyks and Markram model (black +/2
SEM, averaged over many spike-train simulations) with the gains predicted by our excitability estimation model (blue). The model proposed by
Tsodyks & Markram (1997) allows for a closed-form calculation of successive EPSC magnitudes, given a set of presynaptic spikes. The close match
indicates that the changes in average EPSC magnitude are consistent with those that would be produced by a mechanism in service of excitability
estimation.
doi:10.1371/journal.pone.0012436.g003

Bayesian Correction in Neurons
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These physiological adaptation effects follow interesting tempo-

ral profiles. If the adapting stimulus lies on one flank of the tuning

curve, then the response at this ‘‘near flank’’ is quickly reduced.

Only later is an increased response observed on the far flank.

Interestingly, this far-flank facilitation often resulted in an increase

in the magnitude of the response at the (shifted) peak of the tuning

curve. The response profile was not merely translated away from

the adapting stimulus, but instead underwent changes which occur

on at least two separate time scales [23]. While the overall effect is

one of repulsion, the dynamics of the tuning shift displayed

additional subtleties and this time-course can constrain potential

models.

Using a feed-forward network of orientation tuned neurons with

adapting synapses (Fig 4B), our model explains both the repulsive

shift observed in the orientation tuning curve after adaptation, as

well as the separate time scales which govern the effects on the two

flanks (Fig 4C and D). This separation of time scales results from

the assumption of sparse activities. Recall that at the synaptic level,

increases in presynaptic activity result in fast decreases of synaptic

strength, while decreases in presynaptic activity result in slow

increases of synaptic strength. Here, inputs that are tuned to the

adapting stimulus (near-flank) suddenly increase their activity. This

persistent increase is quickly attributed to an increase in

excitability (Fig 4C, blue), and thus the influence of the drive

from these synapses decreases quickly. At the far-flank, there is a

persistent decrease in activity, which is attributed to a decrease in

excitability (Fig 4C, yellow) and results in a slow increase in the

influence of these inputs.

Interestingly, Dragoi et al. [18] observed strong heterogeneity in

the physiological responses of individual neurons to adaptation in

cat primary visual cortex. Using the excitability estimation model

we can examine how variations in neural properties translate into

variability in adaptation responses. We performed two simulations

in which the parameters governing the presynaptic excitability

were kept constant, but the tuning properties of the adapting

neuron were varied (adjusted to produce control tuning curves

which approximately matched two real neurons). Aside from the

tuning properties of the presynaptic neurons, these simulations

used no free parameters. As above, we assume that the

contribution of each timescale to presynaptic excitability is the

same. However, these simulation results reliably predict the

adapted responses of these two neurons (Fig 5). The qualitative

Figure 4. Simulation of repulsive tuning curve adaptation. A) The stimuli presented during the control (upper) and adaptation (lower) epochs
of the sensory adaptation simulations; these are meant to replicate the stimuli used in Dragoi et al. B) A schematic of the network model used to
simulate orientation adaptation. A population of presynaptic neurons, each with its own orientation tuning curve, reacts to the stimulus. These
presynaptic activities are then modulated by the presynaptic excitability, weighted, and summed to produce the postsynaptic response. While the
synaptic weights remain constant, the excitability estimates are updated over time according to the model. C) The time course of two sets of gains
during a period of adaptation to a single stimulus. The gains correspond to presynaptic inputs whose preferred orientations are on the near (blue)
and far (yellow) flanks of the control tuning curve. The dashed lines indicate the time points at which the control tuning curve was measured (black),
as well as three successive adapted tuning curves (red, gold, and green). D) The control tuning curve (black), as well as three successive adapted
tuning curves corresponding to the time points indicated in A.
doi:10.1371/journal.pone.0012436.g004
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differences between the observed tuning curve shifts can be

explained by differences in the tuning widths of the presynaptic

inputs and differences in the tuning properties of the model

neurons. These predictions can be tested in future electrophysi-

ological experiments.

Finally, it is important to ask how robust the assumptions made

under the excitability estimation model are. Since a variety of

biological factors (oxygen concentration, neuromodulators, etc)

appear to affect pre-synaptic excitability, the assumption of multi-

timescale fluctuations seems reasonable. Sampling from the

generative model, this approach stably transmits sensory drive

with 8860.3% variance explained. Although the assumed density

filter used here assumes that sensory drive is sparse and temporally

uncorrelated, we can examine how well it performs when the drive

does have temporal structure. Using 1/f noise [24] the sensory

drive is reconstructed with 3661% variance explained. Removing

the two fastest timescales of excitability fluctuations (2 ms and

5 ms), 1/f noise can be reconstructed with 5961% variance

explained. Removing the three fastest timescales (2, 5, and 18 ms),

1/f noise can be reconstructed with 7561% variance explained.

So while the excitability estimation model presented here is not

optimal for temporally correlated sensory drive, structured (1/f)

drive can be reconstructed with some accuracy, and accuracy

increases as the timescales of fluctuations in excitability and

sensory drive are separated.

Discussion

Here we have shown that several short term and medium term

adaptation effects are consistent with a strategy whereby the

nervous system attempts to compute reliably in the presence of

constantly changing intrinsic excitabilities. Both short-term

adaptation phenomena, those occurring over tens or hundreds

of milliseconds [17,25,26] and medium timescale adaptation

phenomena occurring over seconds to minutes [18,20], have often

been explained as synaptic or neural ‘‘fatigue’’. Under this

interpretation, adaptation can be viewed as a failure by the

system to achieve the proper response due to the temporary

depletion of resources. The adaptation rule that we have presented

here describes how such phenomena may be the result

postsynaptic neurons solving the statistical problem of estimating

presynaptic excitability and canceling fluctuations in excitability.

By assuming that excitability drifts on many timescales and that

sensory drive is sparse, this model describes both short-term

adaptation at individual synapses as well as changes in orientation

tuning during typical medium timescale adaptation experiments.

There is a long history of normalization models in psychophys-

ics. These models [27] suggest that visual adaptation results from

two effects: error-correction mechanisms [28] and dynamic range

optimization [29]. By attributing persistent activity to fluctuations

in excitability, the model presented here provides an instantiation

of these models and performs both error-correction and dynamic

range optimization (gain control, see Supplementary Note S2 and

Fig S2 for details). However, under classical proportional gain

adjustment schemes [30], there is a single timescale of adaptation

and adaptation is symmetric. That is, adaptation to an error in one

direction occurs just as quickly as adaptation to an error in the

opposite direction. Here, by assuming that excitability fluctuates

on multiple timescales and that sensory drive is sparse, adaptation

is both multi-timescale and asymmetric. Both of these factors

appear to be important in explaining the time-course and structure

of synaptic depression and repulsive tuning curve adaptation in

V1.

More recently, generalizations of normalization-type models

have proposed that the nervous system adapts to optimize the

amount of information transmitted by a sensory system which is

limited by noise or the availability of neural resources [10,31]. The

principle behind these approaches (information maximization at

the perceptual level) is different from the one presented here

(stability at the synaptic level). At first glance, models in which the

entire nervous system adapts to the changing statistics of the

natural world are in conflict with the model presented here where

individual synapses attempt to preserve local stability. However, it

is important to note that these two principles are not mutually

exclusive. Although some evidence suggests that information

maximization may not explain adaptation across multiple cortical

Figure 5. Comparison with tuning curve adaptation data. Control and adapted tuning curves from two real example neurons, adapted from
Dragoi et al. (2000) (top). Control and adapted tuning curves from two model neurons whose initial tuning weights were modified to match the
electrophysiological data (bottom). In these two cases, the network tuning parameters are slightly different, but the estimation model and
parameters are the same.
doi:10.1371/journal.pone.0012436.g005

Bayesian Correction in Neurons
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levels [32], the brain is likely to implement strategies that are useful

for multiple purposes, and a range of models address the

mechanisms by which the nervous system may implement

perceptual adaptation [23,33,34].

However, several recent papers have considered information

maximization at the cellular or synaptic level [11,35,36]. Notably,

Pfister et al. [37] consider synapses inferring presynaptic

membrane potential given only spike observations. As with the

excitability estimation model, this framework accurately describes

several characteristics of short-term synaptic depression and

provides a normative alternative to more descriptive, biophysical

models. In many ways, the excitability estimation model presented

here can be interpreted as a system which attempts to efficiently

code sensory drive across synapses, even in the presence of multi-

timescale intrinsic noise.

A number of computational roles for synaptic depression have

been suggested such as decorrelating inputs [38] or adjusting a

neuron’s dynamic range (gain-control) [39]. For neurons to encode

signals from both slowly and rapidly firing presynaptic inputs there

must be some means for neurons to lower the gain of rapidly firing

afferents while increasing the gain of slowly firing afferents.

Without this type of gain-control, any modulation of the low-

activity inputs will be masked by noise from the inputs with high

activity. In the model we present here ongoing activity is always

attributed to presynaptic activity so that changes in background

activity are naturally normalized by the excitability.

Synaptic depression has also been considered as a mechanism

for a number of cellular-level phenomena including direction

selectivity and contrast adaptation [40], cross-orientation suppres-

sion [41], and spatial-phase adaptation [42]. To our knowledge

repulsive shifts in orientation tuning have not yet been explained

by synaptic depression alone. However, it seems likely that such

repulsive shifts could be a result of a type of short-term synaptic

depression. Rather than studying typical models of synaptic

depression as a specific phenomenon, here we treat synaptic

adaptation in general, as the result of excitability estimation. That

such a framework can also explain cellular adaptation on longer

timescales suggests that a normative principle based on stable

computation may be a useful way to link synaptic properties with

cellular response properties.

In explaining medium timescale adaptation phenomena we

have focused on ‘‘repulsive’’ adaptation, where tuning curves are

shifted away from an adapting stimulus. At the perceptual level,

examples of repulsive adaptation include the tilt after-effect [18]

and the motion after-effect [43,44]. In our model, repulsive tuning

curve changes are understood as rational errors committed by a

sensory system which assumes sparseness about neural drive. The

optimal adaptation rule derives from our assumptions about the

statistics of typical neural drive and typical changes in excitability.

In an area of the brain where stimuli typically change slowly

relative to neural excitability adaptation would have the opposite

sign and responses to repeated stimuli should be stronger. This

may well be the case for the motion selective area MT where

adaptation of the opposite sign, attractive adaptation, is observed

[45]. The estimation problem solved by neurons may thus involve

estimation of both intrinsic excitabilities and extrinsic drive

variables.

In the model presented here, the assumption of sparse,

temporally uncorrelated sensory drive is unlikely to reflect the

true statistics of an external variable. Natural stimuli are spatially

and temporally correlated on a range of scales [46], and there is

substantial evidence that temporal structure in extrinsic drive

variables may be important for both neural coding and learning

[47,48,49,50]. Being able to disambiguate fluctuations in excit-

ability from sensory drive requires some distinction between their

temporal structures. While assuming sensory drive is sparse and

temporally uncorrelated makes disambiguation easier, it may be

more likely that sensory drive is temporally correlated (as 1/f, for

instance). Although correlated sensory drive may be more difficult

to distinguish from fluctuations in excitability, it is important to

note that the credit-assignment problem that we model here

operates on a processed version of sensory signals. These processed

sensory signals may be substantially sparser and less temporally

correlated than the features of natural images [51,52].

More generally, the model described here uses a simple linear

response model and thus clearly only implements a rough

approximation to the problem solved by the nervous system. For

example, the inputs in the model are independent of one another,

and the excitabilities of each presynaptic neuron are estimated and

adapted separately. This framing ignores the correlations which

are known to exist in the firing patterns of neural populations, and

such correlations may be crucial in explaining other aspects of

physiological adaptation phenomena. In addition, the simple

network model that we use to simulate orientation tuning omits

many of the properties which such thalamo-cortical networks are

known to exhibit. We chose the simple model here as it allows us

to compactly solve the statistical problem of estimating excitability.

However, stable computation is an appealing general principle.

In a statistically optimal system adaptation is determined by

assumptions about the way both the nervous system and sensory

drive change over time. When these assumptions are violated, for

example by experiments that repeatedly present stimuli that are

rare in the natural environment, phenomena such as the tilt and

motion after-effects are the result. Underlying our analysis of

adaptation is the assumption that the stimuli which lead to effects

such as the tilt aftereffect and the motion aftereffect are in fact very

rare in the natural environment – and the price the nervous system

pays for adaptation under normal situations is thus very small.

These unusual stimuli fool the perceptual system by mimicking a

situation in which the excitability of some neurons has been

increased (and others possible decreased). We propose that

physiological and perceptual sensory adaptation stems from this

fundamental ambiguity that exists between the intensity of sensory

stimuli and the excitability of the neurons that process these

signals.

Methods

An Excitability Estimation Model of Adaptation
Generative Model. We assume that a post-synaptic neuron

seeks to estimate fluctuations in its inputs that occur over time

scales ranging from a few milliseconds to minutes. To accomplish

this goal, the neuron must estimate the excitability fluctuations of

its inputs at each of these time scales. We refer to these estimates of

excitability as gains.

Throughout the following, we use M = 10 timescales t1 . . . tM ,

linearly spaced on a log scale from a few milliseconds (for

t1 = 2ms), up to several minutes (for tM = 5.5min). The temporal

dynamics of the M gains are assumed to be independent random

walks with zero-mean drift (Ornstein–Uhlenbeck processes), with a

variance from one time step to the next that is inversely

proportional to the time scale:

Qj~
1

tj

Each gain decays towards zero at a rate tj , and setting the process

variance Qj inversely proportional to this rate ensures that the

Bayesian Correction in Neurons
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total (stationary) variance associated with each of the time scales is

the same. The evolution of the gains is thus specified by the linear

dynamical system

g
(t)
j ~g

(t{1)
j {(Dt=tj)g

(t{1)
j ze(t)

ffiffiffiffiffi
Dt
p

Where e(t)*N(0,Qj) describes the process noise, independent for

each individual gain. The overall gain G(t), the total excitability of

the presynaptic neuron, is determined by the sum of the individual

gains plus 1:

G(t)~1z
XM
j~1

g
(t)
j

We further assume that synaptic drives are sparsely distributed

under natural stimulus conditions [52], meaning that high drive

values are much less common than low ones. We formalize this

assumption by placing an exponential prior distribution on the

drives, i.e., pd (d)~e{d . Lastly, we assume that the presynaptic

activity at each time step is the product of this sparsely-distributed

true drive and the total current gain estimate. This gives the

observation model

s(t)~d(t) � G(t)

For the simulations presented here G(t) is close to 1 and s is

positive. To estimate presynaptic excitability we then need to be

able to update a probability distribution over the vector g(t) given

the a new observation s(t). Given the exponential prior distribution

over d(t), and the assumption that d(t)~s(t)=G(t), we can employ a

variable transformation and marginalize over d(t) to find the

following likelihood distribution for s(t):

p(s(t)Dg(t))!
1

G(t)
exp {

s(t)

G(t)

� �

This exponential likelihood distribution incorporates our sparse-

ness assumption, and indicates that high input values are much less

common, and therefore more informative, than low input values.

This asymmetry will influence the dynamics of the gain estimates

by allowing gain increases to be detected more quickly and with

less uncertainty than gain decreases.

Estimating Excitability. We have described a statistical

model whose conditional independence structure is equivalent to

that of the state space model, a standard framework for describing

the dynamics of normally distributed variables. However, the

likelihood distribution for s that we derive from our sparseness

assumption is non-Gaussian. To perform approximate Bayesian

inference with this likelihood, we use assumed density filtering

(ADF) [53]. Briefly, we replace the true posterior p(g(t)Ds(1:t)) at

each time-step with a Gaussian (Laplace approximation), which

will allow us to estimate the synaptic gains in response to any series

of stimulus values (see Supplementary Note S1 for details). In

practice, we find this approximation to be quite stable (Fig S1).

Given the assumptions about how s(t) is generated this assumed

density filter allows us to maintain a probability distribution over

g(t) and, thus, an estimate of the total presynaptic excitability ĜG(t).

The goal of this model is then to remove the fluctuating excitability

from the postsynaptic response. In modeling a single synapse, we

assume that the postsynaptic response is the presynaptic activity

normalized by the constantly updated estimate of the total

presynaptic excitability,

R
(t)
post~s(t)=ĜG(t)

Short-Term Synaptic Plasticity
Reducing Response Variability. To illustrate the role of

adaptation in stable computation, we simulate from the generative

model described above where both fluctuations in presynaptic

excitability and the sensory drive are known (Fig 2). In this case,

we simulate a single orientation tuned presynaptic neuron (circular

Gaussian tuning curve) driving a post-synaptic neuron with no

other inputs. We look at the response of the postsynaptic neuron

for randomly presented gratings. Stimulus orientations were

drawn uniformly and independently, presented for 50 ms each –

this specifies the sensory drive. In this case we explicitly simulate

fluctuations in presynaptic excitability using the same multi-

timescale linear dynamical system described above (see Fig 2A and

B). We model the response of an adapting postsynaptic neuron

then by R
(t)
post~s(t)=ĜG(t) where s(t) is the noisy input from the

presynaptic neuron and ĜG(t) is the total estimated presynaptic gain,

as described above (see Fig 2B). We assume that the response of a

non-adapting postsynaptic neuron is simply proportional to the

input s(t) and a gain of 1 is assumed. The parameters for the

timescales and their associated variability are all fixed as above (i.e.

Qj~1=tj ).

Modeling Short-term Synaptic Depression. We then use

this model of gain dynamics to model the short-term changes in

strength of a single synapse. We compare the resulting gain

changes to a model based on neurotransmitter depletion [17].

Under the biophysical model synaptic resources are described as

being effective, inactive, or recovered, and the fraction of resources

in each state evolves according to kinetics that depend on the times

of recent presynaptic spikes. The postsynaptic current at a given

time is proportional to the fraction of resources in the effective

state. Assuming that the time between spikes is much longer than

the timescale of inactivation (typically ,3ms) the size of excitatory

postsynaptic currents (EPSC) follows

EPSCnz1~EPSCn(1{USE)e{Dt=treczASEUSE(1{e{Dt=trec )

where Dt denotes the time interval between the nth and (n+1)th

spike, trec denotes the timescale of recovery, USE denotes the

utilization parameter, and ASE denotes the absolute synaptic

efficacy. For our simulation we use the same parameters as [17]:

trec~450ms, USE~0:55, ASE~250pA, and the input level (Dt)
was drawn randomly every 500ms from a uniform distribution.

Since this biophysical model operates on the precise spike timings,

we drew 1000 inhomogeneous Poisson spike trains from the same

underlying firing rate. Fig 3B shows the average, firing rate

response. For our model, we use the same sensory drive (the input

level Dt) and kept the true presynaptic excitability fixed during the

simulation. Given this presynaptic activity, we then estimate the

total presynaptic excitability ĜG(t) using the methods described in

the first sections. In this case the estimated presynaptic excitability

is very different from the true presynaptic excitability, which is

fixed. Instead, presynaptic activity which is unlikely to be

generated by sensory drive, given our assumptions, is attributed

to fluctuations in presynaptic excitability.

To fit the data from [16] we use the same techniques. We

assume that the sensory drive is equivalent to the stimulus

frequency and that the true presynaptic excitability is fixed. Given
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this presynaptic activity (the product of the sensory drive and

generative excitability) we then estimate the presynaptic excitabil-

ity ĜG(t).

To model results for [16] as well as [17] we fit a single scaling

parameter to each. Importantly, this is the only free parameter.

The other parameters (the timescales t and their associated

variabilities Q) are fixed by the assumption that each timescale

contributes equally to the total variance.

Orientation Tuning Adaptation
Network Model. We also apply the model of gain dynamics

to a simple network model of orientation tuning in primary visual

cortex. In this model, a single postsynaptic cell receives input from

N presynaptic cells (N = 10 for the results presented here). Each of

the N synapses has a full complement of M gains, and the gains at

each synapse i are estimated independently in response to the

presynaptic activity observed at each time step, s
(t)
i . The activity

level of the postsynaptic cell at time t is determined by these

excitability-normalized inputs:

R
(t)
post~

XN

i~1

wi

ĜG
(t)
i

s
(t)
i

Here, ĜG
(t)
i is the total estimated excitability at time t for ith

presynaptic input. Note that the postsynaptic cell is completely

linear, as its response computed as a weighted sum of its inputs at

each time step. The wi’s are the fixed components of the synaptic

strengths, and follow a circular Gaussian tuning curve profile:

wi~bz
X?

k~{?

exp {
(

i

N
{POz180k)2

2TW 2

8><
>:

9>=
>;

The presynaptic cells are also assumed to have circular Gaussian

tuning curves, with preferred orientations evenly spaced every

180/N degrees. Given this tuning we can then generate the

response s
(t)
i of each presynaptic neuron at each time. In this

simple model, the presynaptic cells do not have their own input

gains and do not undergo adaptation.

At each time step, the stimulus causes each of the presynaptic

cells to become active according to its tuning curve. This stimulus

drive is in addition to a lower, spontaneous level of activity b which

is always present on all of the presynaptic neurons. This input

profile is a simple approximation of the orientation-tuned inputs

which are known to feed neurons in primary visual cortex. This

simple model omits prominent features of real orientation-

selectivity networks, including nonlinear responses and recurrent

connections, but it is able to reproduce several important

adaptation phenomena (Figs 4 and 5).

We should note that, in addition to the pre-adaptation tuning

curve, the tuning widths of the presynaptic neurons affect the

specific time-course and shape of adapted tuning curves. The

input tuning widths for the two simulations in Figure 5 were

randomly perturbed. Importantly, this network model and the

results presented here use no free parameters aside from those

which determine the initial tuning curves. The timescales and

associated variability on each synapse were fixed according to the

single-synapse model described above. The synaptic strengths

were fit using maximum likelihood (Gaussian noise model) to

match the initial tuning curves for the two example cells (Fig 5),

and the preferred orientations of the presynaptic cells were evenly

spaced.

Stimuli. Each orientation adaptation simulation is divided

into two epochs (Fig 4A). In the first ‘‘control’’ epoch, the stimulus

orientations are drawn uniformly and independently and

presented for one second each (i.e., white noise; see Fig 4A,

upper). In the second ‘‘adaptation’’ epoch, a single stimulus

orientation is chosen and is presented continuously for the

duration of the simulation (see Fig 4A, lower). During this

adaptation period, the presynaptic cell whose preferred orientation

is closest to the adaptation stimulus is maximally active, and all of

the other inputs are active to a lesser degree. The exact degree of

activation is determined by the circular Gaussian tuning curve

associated with each presynaptic cell. A schematic of the complete

model is shown in Figure 4B.

Again, as with the simulations of single synapses we assume that

the true presynaptic excitability is fixed. In this case the estimated

presynaptic excitability of each synapse is very different from the

true presynaptic excitability. Instead, presynaptic activity which is

unlikely to be generated by sensory drive, given our assumptions, is

attributed to fluctuations in presynaptic excitability.

Supporting Information

Figure S1 The assumed density approximation in 2D. Calcu-

lating the true posterior at each time-step is difficult to do

analytically, since the likelihood is non-Gaussian (left column).

However, we can approximate the posterior with a Gaussian at

each time-step (right column, ADF). Here we show a single time-

step of this approximation for 2-dimensions, where s = 2,

cov_t = 2.5I, and g(t-1) = [0.5; 0.5] (top row) or g(t-1) = [1.5; 1.5]

(bottom row). The blue line denotes the maxima of the likelihood,

the blue circle denotes the maximum of the prior, and the black

cross denotes the maximum of the posterior.

Found at: doi:10.1371/journal.pone.0012436.s001 (0.74 MB EPS)

Figure S2 Gain control. The excitability estimation model

naturally reproduces many aspects of gain control. Input rates are

naturally normalized by ongoing activity. In this simulation a

neuron receives two synaptic inputs with average rates of 100Hz

and 10Hz. (left) 50% modulation of the 100Hz input, produces

,12% modulation in the output with adaptation and ,50%

modulation without adaptation. (middle) 50% modulation of the

10Hz input, produces ,15% modulation in the output with

adaptation and 5% without modulation. (right) 5% modulation of

the 100Hz input produces ,5% modulation in the output with

adaptation. Blue and green denote the rates of the 100Hz and

10Hz input respectively.

Found at: doi:10.1371/journal.pone.0012436.s002 (3.12 MB EPS)

Note S1 Assumed density filtering.

Found at: doi:10.1371/journal.pone.0012436.s003 (0.04 MB

DOC)

Note S2 Excitability estimation and gain control.

Found at: doi:10.1371/journal.pone.0012436.s004 (0.03 MB

DOC)
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