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Stevenson IH, Cherian A, London BM, Sachs NA, Lindberg E,
Reimer J, Slutzky MW, Hatsopoulos NG, Miller LE, Kording KP.
Statistical assessment of the stability of neural movement representa-
tions. J Neurophysiol 106: 764–774, 2011. First published May 25,
2011; doi:10.1152/jn.00626.2010.—In systems neuroscience, neural
activity that represents movements or sensory stimuli is often char-
acterized by spatial tuning curves that may change in response to
training, attention, altered mechanics, or the passage of time. A vital
step in determining whether tuning curves change is accounting for
estimation uncertainty due to measurement noise. In this study, we
address the issue of tuning curve stability using methods that take
uncertainty directly into account. We analyze data recorded from
neurons in primary motor cortex using chronically implanted, multi-
electrode arrays in four monkeys performing center-out reaching.
With the use of simulations, we demonstrate that under typical
experimental conditions, the effect of neuronal noise on estimated
preferred direction can be quite large and is affected by both the
amount of data and the modulation depth of the neurons. In experi-
mental data, we find that after taking uncertainty into account using
bootstrapping techniques, the majority of neurons appears to be very
stable on a timescale of minutes to hours. Lastly, we introduce
adaptive filtering methods to explicitly model dynamic tuning curves.
In contrast to several previous findings suggesting that tuning curves
may be in constant flux, we conclude that the neural representation of
limb movement is, on average, quite stable and that impressions to the
contrary may be largely the result of measurement noise.

neurons; sensory stimuli; spatial tuning curves; Poisson noise; tuning
curves; primary motor cortex

MANY EXPERIMENTS IN NEUROSCIENCE aim at measuring how
experimental manipulations affect the tuning properties of
neurons. Tuning curves typically characterize how firing rates
depend on a single relevant property of a stimulus or move-
ment. For example, visual neurons are often characterized by
their dependence on stimulus orientation, auditory neurons by
their dependence on pitch, and motor cortical neurons by their
dependence on the direction of movement of an animal’s hand.
A common method for studying how these coding properties
change is to characterize the tuning curve, introduce an exper-
imental manipulation, and characterize the tuning curve again
to assess if changes have occurred (Cronin et al. 2010; Li et al.
2001; Rokni et al. 2007; Schummers et al. 2007). Tuning
curves, in a variety of brain areas, have been shown to change
during adaptation and learning. In the absence of an experi-

mental manipulation, we can ask how stable tuning curves are
and whether they drift due to the passage of time. Importantly,
determining whether changes in tuning are statistically signif-
icant depends on our ability to take into account the effects of
noise and limited data.

Since noise in the recorded data (e.g., Poisson noise in spike
counts) will affect tuning curve estimates, it is important to
characterize any tuning curve parameters with confidence
bounds. Without such bounds, it is impossible to determine
whether an observed change is due to actual changes in tuning
or simply measurement noise and uncertainty in the estimation.
We will tend to overestimate the average (absolute) magnitude
of any existing tuning curve changes, since the measured
change consists of the real change plus apparent changes due to
measurement noise. Therefore, measurement noise must be
considered to obtain reasonable estimates of the magnitude of
changes in tuning curves.

Here, we focus on the role of measurement uncertainty in
estimating the tuning curves of neurons in primary motor
cortex (M1). In particular, we examine the discharge properties
of neurons during a well-learned, center-out task, where a
monkey is trained to reach from the workspace center to
several peripheral target locations (Georgopoulos et al. 1982;
Kakei et al. 1999; Kalaska and Hyde 1985; Morrow et al. 2007;
Scott and Kalaska 1997). Typically, tuning curves that char-
acterize the discharge of neurons in M1, as a function of
reaching direction, are well fit by a cosine function (Georgo-
poulos et al. 1982, 1988). The peak of this cosine indicates the
direction of movement for which the neuron’s firing rate is
maximal, the “preferred direction” (PD).

A central question in the neural control of movement is
whether the PDs of M1 neurons are stable during normal
behavior, from reach to reach. If tuning curves fluctuate from
reach to reach, the motor system must either be redundant, such
that fluctuations do not affect behavior (Pohlmeyer et al. 2007;
Rokni et al. 2007), or must rapidly adapt to allow for stable
movement. By recording many trials from the same neurons
over the course of several days, a number of studies have
shown that neuronal tuning appears to be relatively stable
(Chestek et al. 2007; Dickey et al. 2009). However, there is
also some contrasting evidence to suggest that neurons fluctu-
ate rapidly on timescales on the order of minutes to hours
(Rokni et al. 2007). One recent study found that the PDs of
movement-related neurons in M1 varied substantially over
time with a majority of neurons shifting as much as 30° within
15 min (Rokni et al. 2007). These results suggested that
neurons may be quite unstable and that there must be substan-
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tial redundancy in the nervous system and downstream pro-
cessing to ensure stable behavior. However, these estimates
were obtained with methods that did not explicitly correct for
measurement noise.

In this study, we address these issues using methods that
take measurement uncertainty and potential instability directly
into account. We analyze data recorded from neurons in M1
using chronically implanted multielectrode arrays. With the
use of simulations, we demonstrate that under typical experi-
mental conditions, the effect of neuronal noise on estimated PD
can be quite large. With the use of experimental data, we find
that after taking uncertainty into account, the average patterns
of neuronal activity expressed by tuning curves are quite stable
on a timescale of minutes to hours. We then explore ways of
explicitly modeling dynamic tuning curves using adaptive
filtering methods. These methods reveal that there may be tiny
but real fluctuations of the tuning properties of neurons but that
such changes are very hard to detect robustly. We conclude
that the neural representation of limb movement is actually
quite stable and that impressions to the contrary may be the
result largely of measurement noise.

METHODS

Tasks. Four monkey subjects (designated F, K, C, and R) were
trained on an eight-target center-out reaching paradigm. Monkeys F,
K, and C were seated in a primate chair with movement constrained
to a horizontal plane. The monkey grasped the handle of a two-link
planar manipulandum that moved within a 20-cm by 20-cm work-
space. Feedback about movement was given on a computer screen in
front of the monkey. Handle position was displayed as a circular
cursor, 1–2 cm in diameter. The experiments with monkey R used a
KINARM device (BKIN Technologies, Kingston, ON, Canada), in
which the monkey’s arm rested on cushioned troughs secured to links
of a two-joint robotic arm (Scott 1999). The shoulder joint was
abducted 90°, such that shoulder and elbow flexion and extension
movements were made in the horizontal plane. A cursor coincident
with the handle position of the robotic arm was projected onto a
horizontal screen placed above the monkey’s arm. All trials began
with the acquisition of a square center target, which the monkey was
required to hold for 0.3–1.1 s (0.6–1.1 s for monkey F, 0.5–0.6 s for
monkey C, 0.3–0.5 s for monkey K). After this hold period, subjects
reached to one of eight equally spaced peripheral targets. Subjects had
�1.25 s to acquire the outer target and were required to hold this outer
target for at least 0.2–0.5 s. Each success was rewarded with juice or
water.

Surgery. Once the monkey was able to perform the center-out task
satisfactorily, we performed a surgery to implant a 100-electrode
intracortical array (Blackrock Microsystems, Salt Lake City, UT). We
made a craniotomy centered above the arm area of M1. After opening
the dura, we identified the area on the crown of the precentral gyrus,
just medial to the spur of the arcuate sulcus. In some cases, we
stimulated within this area using a ball electrode array (monopolar,
biphasic, 50 Hz, 100-�s pulse width, �6 mA) to locate proximal limb
movements. All surgery was performed under isoflurane gas anesthe-
sia except during intraoperative stimulation. To increase cortical
excitability, �30 min prior to stimulation, we began infusing remifen-
tanil (0.4 �g/kg/min iv), while gradually reducing the concentration of
isoflurane to 0.25%. We positioned the array within the identified
area, taking care to avoid any major surface vessels, and inserted it
rapidly with a pneumatic inserter (supplied by Blackrock Miscrosys-
tems). The dura was closed over the array with a piece of artificial
pericardium (Preclude expanded polytetrafluoroethylene membrane,
Gore and Associates, Flagstaff, AZ) under the dura to prevent the
back of the array from adhering to the dura. Another piece of Preclude

was placed over the dura. The original bone flap was thinned and
replaced, and the skin was closed over the craniotomy. All leads from
the array were routed to a percutaneous connector secured to the
monkey’s skull (Nordhausen et al. 1996).

All animal use procedures were approved by the Institutional
Animal Care and Use Committees at Northwestern University (Chi-
cago, IL; datasets F, K, and C) or the University of Chicago (Chicago,
IL; dataset R).

Tuning curve estimation and simulations. Spike trains from each
subject were recorded during center-out reaching for 30–40 min,
resulting in at least 300 successful trials for datasets F, R, and K and
290 trials for dataset C. Neural signals were classified as single units
based on action-potential shape and minimum interspike intervals of
1.6 ms. Spike sorting was performed offline by manual cluster cutting.
Trial-by-trial spike counts from 100 ms prior to movement onset until
300 ms after movement onset are used throughout the analysis.

Following the conventional cosine-tuning model, we assume that
the firing rate of each neuron depends on the direction of hand
movement, � as

y � b0 � b1 cos�� � ��� (1)

where the parameters b0, b1, and �* denote the baseline firing rate,
modulation, and the PD (Georgopoulos et al. 1986). Traditionally,
these parameters are estimated by minimizing the squared error
between predicted and actual firing rates (Swindale 1998). To simplify
the optimization, we can use the sum-difference formula for cosines to
rewrite Eq. 1 as

y � b0 � c1 cos��� � c2 sin��� (2)

giving �* � atan (c2, c1) and b1 � (c1, c2)/(cos�* � sin�*). In this
form, we can efficiently estimate the parameters using linear regres-
sion. Note that since minimizing the squared error is equivalent to
maximizing the log likelihood with a Gaussian noise model, this
optimization implicitly assumes Gaussian noise. In the low firing rate
limit, other noise models, such as Poisson, may be more appropriate
(Cronin et al. 2010), and several studies have suggested that expo-
nential cosine-tuning functions may be a better description of neurons
in M1 (Amirikian and Georgopulos 2000; Hatsopoulos et al. 2007).
An analysis of these alternative tuning models is presented (see
Supplemental Material). However, for the main analysis, we assumed
cosine tuning with Gaussian noise as a standard model.

For simulations, the firing rate is assumed to be constant over the
observation window, drawn from a Poisson distribution with a firing
rate given by Eq. 1. For the example neurons, we fixed the parameters
by hand to a physiologically plausible range, and for a more complete
analysis, we incrementally varied the modulation depth. For compar-
isons with recorded data, the parameters b0, b1, and �* were estimated
from the entire recording session for each recorded neuron. We then
simulated “stable” neurons with the same tuning properties and
compared these results, where tuning curves are fixed, with the
observed data. This allowed us to test whether results, which previ-
ously seemed to suggest tuning curve drift, might be consistent with
noisy, stable neurons. It is important to note that although tuning
curve estimation assumed Gaussian noise, the simulations used here
assumed Poisson noise. This is somewhat nonstandard from the point
of view of statistical inference, but we have used this approach since
the Gaussian noise assumption is so commonly used for estimating
motor tuning curves.

Bootstrapping. To estimate the uncertainty associated with each of
the parameters in Eq. 1, we used bootstrapping (Davison and Hinkley
1997; Efron and Tibshirani 1997). Briefly, we randomly resampled
the original data with replacement and estimated the parameters from
each of these resampled datasets. Bootstrapping creates a distribution
of parameters consistent with the data, from which confidence inter-
vals can be estimated, and significance can be assessed. In practice,
the results are robust to the choice of number of bootstrap samples and
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in this case, were nearly identical for �500 samples. In the following
analyses, we used 1,000 bootstrap samples.

The variability of the bootstrap samples gives an indication of how
uncertain the parameter estimates are. Confidence intervals for each of
the parameters can then be assessed using the quantiles of the
bootstrapped distributions over the parameters. For example, 95%
confidence intervals are estimated by the 2.5 and 97.5 percentiles of
the distribution. After sorting the samples, the lowest and highest
2.5% of the samples are discarded. The range of the remaining
samples then defines the error margin. For 1,000 bootstrap samples,
these would be the 26th and 975th samples from the ranked list.
Importantly, this method does not need to make the assumption that
the distribution is Gaussian, symmetric, or even unimodal.

Since the PD parameter is in circular coordinates, special care is
needed to estimate the confidence interval. A number of methods exist
for dealing with small (�100) sample sizes (Fisher 1996; Otieno and
Anderson-Cook 2008). However, in our case (�1,000 bootstrap
samples from well-tuned neurons), it suffices first to center the
samples by the median and then, to apply the quantile procedure
described above.

Estimating confidence intervals allows us to assess statistical sig-
nificance. Mainly, we want to determine whether the change in PD
from one block of trials to the next is statistically significant. In this
case, we examined the distribution of differences between the boot-
strap samples for PD from each block. If the 95% confidence interval
for this distribution of differences did not contain 0, then we reject the
null hypothesis (that the difference actually is 0) at the 5% signifi-
cance level. For a previous application of this method to tuning
curves, see Churchland and Shenoy (2007).

In general, the size of confidence intervals is determined by the
number of spike observations. For example, the SEM for a Poisson
distributed random variable scales as 1/�N, where N is the number of
observations. For cosine-tuned neurons, the confidence interval about
the PD is the main quantity of interest. For simplicity, we can
reparameterize the tuning curves (Eq. 1) in terms of the total number
of spikes emitted by a neuron and the depth of modulation relative to
baseline (M � b1/b0). Given the assumptions of Poisson noise and
cosine tuning, uncertainty about PD is affected only by these two
factors.

To assess how these factors influence the measurement uncertainty,
we parametrically varied the total expected number of spikes as well
as the modulation depth. For each simulated neuron, we sampled
spikes from a Poisson distribution in eight reach directions with the
firing rate given by a cosine-tuning curve. Without loss of generality,
we can assume that the PD is 0°. We then used the bootstrapping
approach described above to generate bootstrap PD distributions for
each modulation-depth and spike-count combination and determined
the 95% confidence bounds of the distribution.

To compare our results with previously published data, we read out
the maximal and minimal firing rates across direction from the graphs
published in several papers (Kalaska et al. 1989; Rokni et al. 2007;
Wise et al. 1998). In these cases, we estimated modulation depth from

the tuning curves as M̂ � (max � min)/((max � min)/2), and the total

number of spikes was estimated as N̂ � Tw(max � min)/2 where T is
the number of trials, and w is the integration window.

Corrected estimate of the variance of changes in PD. In the
presence of measurement noise, the differences that we observe in PD
between blocks will be partially due to a true (hidden) drift and
partially due to the measurement noise. Therefore, we will tend to
overestimate fluctuations in PD. With the use of PD to denote the true,
but unobserved, PD and PDest to denote the estimated PD

var�PD1,est � PD2,est� � var��PD1 � �1� � �PD2 � �2�� (3)

where �1 and �2 denote instantiations of the measurement noise,
which is assumed Gaussian. Since the variance of a sum of indepen-

dent random variables is equal to the sum of the variances, the
corrected estimate of the fluctuations in PD is given by

var�PD1 � PD2� � var�PD1,est � PD2,est� � var��1� � var��2�
(4)

which captures the excess variance (above the measurement noise)
that may be attributed to an actual change in PD. We estimated var(�)
empirically by using the variance of the bootstrap samples (mean
across the population of neurons). In some cases, the corrected value
var(�PD) was negative. These values were set to 0 to calculate
summary statistics and suggest that there was no detectable PD drift
after accounting for measurement noise. The mean and difference
statistics reported in the text were all calculated using circular statis-
tics (Berens 2009). However, the equations above use a linear rather
than circular coordinate system for correcting the variance. In the
results presented here, the distribution of �PD is narrow enough that
Eqs. 4 and 5 provide an accurate approximation to the fully circular
variance correction.

Adaptive filtering. Although the methods described above for
assessing and describing drift are fairly robust, one potential issue
with these approaches is that they assume that tuning curves are stable
within each block and that each trial is independent. Ideally, we
should use a method that explicitly assumes that tuning curve param-
eters are drifting over time from trial to trial. Adaptive filtering is one
approach that makes this assumption explicit. Several recent studies
have used point-process adaptive filtering to describe time-varying
tuning of place cells in hippocampus (Brown et al. 2001; Eden et al.
2004). Here, for consistency with the initial analysis, we analyze
trial-by-trial spike counts, assuming cosine tuning with Gaussian
noise, and use least-mean-squares (LMS) or steepest-decent adaptive
filtering (Haykin 1996). Briefly, the parameters of the tuning model �
are updated every trial following

�̂k � �̂k�1 � �
� lk���

�� 	���̂k�1
(5)

where lk(�) denotes the instantaneous, negative log likelihood
(squared error), and � denotes a learning rate that must be optimized
separately. Assuming Gaussian noise and writing (Eq. 2) in matrix
form, such that y � X�, where Xk � [1 cos(�k) sin(�k)], and � � [b0

c1 c2]T, we have the updates

�̂k � �̂k�1 � ��yk � Xk�̂k�1�Xk
T (6)

The aim of this analysis is to update the parameters at each
time-step to minimize prediction errors. The learning rate for each
neuron and parameter is chosen to maximize the total likelihood of the
time-varying parameter estimates. The final time-varying parameter
estimates then allow us to extract the per-trial drift rate and fluctua-
tions for each parameter. For the analyses presented here, we focus
solely on the dynamics of the PD. In this case, the tuning curve is
parameterized following Eq. 1, and the baseline and modulation are
held constant, whereas the PD is updated as

�̂k
� � �̂k�1

� � ��yk � �b0 � b1 cos��k � �̂k�1
� ��� � sin��k � �̂k�1

� � .
(7)

The LMS algorithm works well for processes where the parameters
follow a Gaussian random walk. To examine the performance of
adaptive filtering, we simulated cosine-tuned Poisson neurons with
fixed baseline firing rate and modulation, but where the PD followed
a random walk

�k
� � �k�1

� � 
 
 � N��, ��. (8)

In this case, the PD changes by a random amount 
 each trial,
drawn from a Gaussian distribution with mean � and SD �.

Time-varying tuning can lead to surprising results. For instance, a
neuron that appears very broadly tuned using traditional block-
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estimation techniques may, in reality, be a sharply tuned but drifting
neuron (Brown et al. 2001). Finally, it is important to note that when
the parameters do not have linear dynamics but instead, change
suddenly, recursive methods may be more appropriate to estimate
these changes accurately [see Eden et al. (2004)]. Here, we used the
more basic LMS algorithm as a first step in analyzing trial-by-trial
fluctuations in tuning parameters.

RESULTS

Measuring uncertainty in estimates of PD. To illustrate how
measurement noise affects estimates of neuronal PD, we sim-
ulated the discharge of a typical cosine-tuned Poisson neuron
(Fig. 1A) during repeated reaches to eight targets. We assume
the simulated neuron has a movement-related discharge with a
baseline firing rate of 20 Hz and a modulation of 5 Hz. Without
loss of generality, we assume that the neuron has an actual PD
of 180°. Due to Poisson noise in the simulation, the number of
spikes generated during different reaches to the same target
differed considerably (Fig. 1B). This type of variability is
typical of experimental recordings. To characterize measure-
ment uncertainty in this situation, we used the well-established
technique of bootstrapping. Essentially, bootstrapping is a
procedure that produces alternative fits, which could have been
obtained if one could repeat a given experiment many times. In
the case of the simulated neuron in Fig. 1, we initially simu-
lated 40 reaches. With bootstrapping, we resampled from these
data with replacement, each time computing a tuning curve and
PD (Fig. 1C). Ultimately, this process can be used to obtain a
distribution of possible PDs that is compatible with the original
spike data and that can be used to estimate how reliable each
tuning parameter is (Fig. 1D). In this example, the 95%
confidence interval spanned �40°. The parameters that we
used were well within the range of typical M1 experiments
(Georgopoulos et al. 1982; Kalaska et al. 1989; Morrow et al.
2007; Wise et al. 1998); however, even after 40 trials, there
was considerable uncertainty in the PD, and this uncertainty
directly determines whether a change in tuning can be detected.

To determine whether the tuning curve of a neuron has
changed, we can use this same bootstrapping approach on two
successive blocks of data. For illustration, we simulated a
hypothetical neuron with a tuning curve that changed following
an experimental manipulation (Fig. 2A). We again assumed
that this neuron has a baseline firing rate of 20 Hz and a
modulation of 5 Hz. In this case, we assumed that the PD
changes from 90° in the first condition to 135° in the second
condition. After simulating 40 reaches for each condition (Fig.
2B), we calculated distributions over potential PDs for each of
the two conditions using bootstrapping (Fig. 2C). The two
resulting distributions of PDs overlapped only slightly, and the
distribution of differences between the PDs was significantly
different from 0. For this simulation, bootstrapping allowed us
to conclude that the PD changed as a result of the experimental
manipulation. However, the width of the resulting histograms
(�40°) indicates that changes in PD for a given neuron need to
be rather large to be visible with this amount of data.

It is important to understand how measurement uncertainty
varies as a function of these simulation parameters. Given
cosine tuning and Poisson noise, there are two relevant param-
eters that determine the precision of PD estimates: the total
number of spikes and the modulation depth relative to baseline
(see METHODS). We used the bootstrapping methods described

above to calculate the average confidence interval size as a
function of these two parameters (Fig. 3). In this case, a
modulation depth of 1 corresponded to a cosine between 0 and
the maximal firing rate, and a modulation depth of 0 corre-
sponded to an untuned cell. In general, more strongly modu-
lated neurons yield more precise PD estimates, and as more
data are observed, the estimates of all tuning curve parameters
become more precise.

Based on these simulated results, the precision of PD esti-
mates in typical studies is likely to vary substantially. Here, we
have shown total spike numbers and modulation depths, for

Fig. 1. Measurement noise for a simulated neuron with known tuning.
A: idealized cosine-tuning function of a neuron with typical movement-related
discharge (20 Hz) and a modulation (5 Hz). B: 40 trials simulated during
movement in 8 directions with Poisson spike noise. C: 3 example bootstrap
samples from the initial set of observations in B. Note that there is substantial
variability in the estimated preferred direction (PD; arrows). D: using many
bootstrap samples, we build a distribution of PDs that allows estimation of
confidence intervals. In this case, the 95% confidence interval spans �40°.
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example, neurons in several published studies (Kalaska et al.
1989; Rokni et al. 2007; Wise et al. 1998), as well as our own
data (Fig. 3B). Some of these studies allowed PDs to be
estimated with a precision of �10°, whereas others were
probably precise only to 50° or 60°. For our data, the average
modulation depth was 0.49 	 0.02, with 6.23 	 0.39 spikes/
trial on average (400 ms integration window). Mapping these
values onto the simulation results suggested an average confi-
dence interval size of 33.5° for blocks of 40 trials, 20.6° for
blocks of 120 trials, and 16.9° for blocks of 240 trials.

Here, we have assumed that the only source of variability, in
addition to directional tuning, is Poisson noise. Because there
are certainly other noise sources, the values reported in Fig. 3
should be seen as a lower bound on the uncertainty. However,
this figure can be used to estimate measurement uncertainty,
both for data that are already published and also to provide a
type of power analysis for future studies. Given a baseline
firing rate and modulation depth, this figure provides an ap-
proximate number of trials necessary to achieve a desired
precision in PD estimates. For the purposes of this study, it is
important to note that uncertainty in estimates of PD can be of
the same order of magnitude as the size of changes reported in
previous papers—changes that have been attributed to either
experimental manipulations or instability.

Assessing tuning curve stability, taking uncertainty into
account. Whereas examples and power analysis illustrate how
bootstrapping can be used to assess measurement uncertainty

in the presence of simulated Poisson noise, bootstrapping is
also a powerful technique for the analysis of actual data.
Several recent studies have suggested that the PDs of neurons
in M1 may be drifting rapidly over the course of tens of
minutes (Carmena et al. 2005; Rokni et al. 2007). However, in
describing changes in PDs, these studies did not explicitly
account for measurement uncertainty. As noted above, es-
timated changes in PD can easily be inflated, since they
include effects due to both any actual changes and measure-
ment noise. Here, we used bootstrapping to assess the
stability of M1 neurons during well-learned, center-out
reaching.

To address these issues experimentally, we analyzed how
the properties of recorded neurons in M1 from four animal
subjects evolved over the course of a recording session. We
recorded four datasets: C (79 neurons), F (36 neurons), K (92
neurons), R (78 neurons), each consisting of at least 290
successful trials with sessions lasting 30–40 min. After col-
lecting spike counts from 100 ms prior to movement onset to
300 ms following movement onset, 70.5% of the recorded
neurons (201/285 total—38/79, 34/36, 72/92, and 57/78 in
datasets C, F, K, and R, respectively) showed significant cosine
tuning across all trials (� � 0.05, Hotelling’s T2-test, see
Supplemental Note). In the following sections, we limited our
analysis to these significantly tuned neurons.

Following previous approaches (Rokni et al. 2007), we
divided our dataset of center-out movements into blocks of
trials. For each block, we estimated the neuron’s PD, baseline
firing rate, and modulation (see METHODS) and determined the
95% confidence interval for the PD estimates using bootstrap-
ping. To compare these empirical results with the previous
power analysis, we first varied the number of trials included in
each block (block size) and noted the average confidence
interval size. As suggested by the power analysis, the size of
the confidence interval decreases as the block size increases
(Fig. 4). In this case, where modulation is measured from the
data, confidence interval size dropped �1 �numberof trials. In
close approximation to the power analysis estimates, we found
that in real data, the average confidence interval size is 43.7°
for blocks of 40 trials, 24.4° for blocks of 120 trials, and 16.3°
for blocks of 240 trials. Simulated Poisson neurons that were
stable and matched for tuning showed a very similar decrease
in confidence interval size as a function of the number of trials
(Fig. 4, red curves).

Keeping in mind that measurement uncertainty (confidence
interval size) is related to the block size, we then assessed
stability in PD and examined changes in tuning between
blocks. With the use of bootstrapping analysis and examining
successive blocks of 120 trials, we found that many neurons
appear to be quite stable (Fig. 5A). However, there were
neurons in each of the four datasets that appeared to drift and
have relatively large changes in PD, modulation, and baseline
firing between successive blocks (Fig. 5B). To determine
whether these changes are real effects or simply artifacts of
high measurement uncertainty, it is important to consider
whether the observed changes are statistically significant.
Greater drift in PD is correlated with smaller baseline firing
rates (Fig. 5C), as well as smaller modulation (Fig. 5D). In
general, the neurons with larger apparent changes were the
ones that also had large confidence intervals and high uncer-
tainty about PD (Fig. 5E).

Fig. 2. Measurement noise affects the ability to detect PD changes.
A: cosine-tuning curves for a pair of simulated neurons having PDs of 90°
(black) and 135° (gray). B: 40 trials simulated from each of these tuning curves
during movement in 8 directions with Poisson spike noise. C: bootstrap
distributions for the PD based on the data in B. Note that there is overlap
between these distributions, and the differences between the two distributions
allow us to assess whether there is a significant tuning difference between the
two conditions.
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In all datasets, we found that the average change in PD from
one block to the next was small. For a block size of 40 trials,
the mean change was �0.8 	 1.1° and for blocks of 120 trials,
2.3 	 1.5° for all neurons. Despite the fact that the average PD
change is close to 0, there was substantial variability in the
changes, which at first glance, appears to be an indication that

PDs fluctuate (Fig. 6). The SD of PD changes was 39.0 	 2.2°
for blocks of 40 trials and 22.9 	 3.2° for blocks of 120 trials.
However, based on the bootstrapping analysis, only a small
number of these changes were significant (5.8% for 40 trials
and 5.5% for 120 trials; bootstrapping test, � � 0.05, not
correcting for multiple comparisons). In fact, simulated Pois-
son neurons that were stable and matched for tuning had a
distribution of changes from one block to the next, which was
almost identical to the distribution of observed PD changes.
These results suggest that the majority of neurons is stable on
timescales on the order of minutes or if they are unstable, drift
at a rate that is undetectable given the amount of measurement
noise (�43.7° over 40 trials and �16.3° over 120 trials).

For the population, we can attempt to estimate the true
variability in PD changes using a corrected measure of SD that
attributes the observed fluctuations to a combination of real
changes in PD and measurement noise (see METHODS). With the
use of this method, we found that the corrected SD for blocks of
40 trials was 0.4 	 1.1° and for blocks of 120 trials, was 1.8 	
2.5°, compatible with absolutely stable PDs. Our findings are thus
consistent with the results from several past studies that incorpo-
rated enough data to reduce measurement errors (Chestek et al.
2007; Ganguly and Carmena 2009) and provide statistical insights
into previous findings of apparent instabilities.

Explicitly modeling dynamic tuning curves with adaptive
filtering. In the methods described above, tuning curves are
assumed to be static within each block, with changes occurring
only between blocks. So far, our results have suggested that
any changes in PD that do exist are below the level of
measurement uncertainty (16.3° over 120 trials on average).
These block-by-block methods gain statistical power by incorpo-
rating more trials, but at the same time, by including so many
trials, they average over any potential fluctuations that might exist.
Ideally, we would like to use a method that explicitly models
dynamic tuning curves, which change from trial to trial. Adaptive
filtering is one approach for modeling exactly this type of
relationship, and several recent studies have used adaptive

Fig. 3. Uncertainty in PD as a function of the number of spikes and modulation depth of a simulated neuron. Uncertainty about the PD decreases both with
increasing number of observations and increasing modulation. A: contour plots illustrating the width of the 95% confidence intervals. Levels denote 1-sided 95%
confidence intervals in degrees. For instance, for 0 observations or a modulation of 0, the confidence intervals span 	180°. B: color plot of same values with
representative examples from 3 published studies: �, Rokni et al. (2007); ●, Kalaska et al. (1989);‘, Wise et al. (1998). The average confidence intervals for
the data used here are shown as open circles for blocks of 40, 120, and 240 trials (from left to right).

Fig. 4. Uncertainty in PD with increasing numbers of trials for 4 sets of data
collected from 4 different monkeys. Average size of the 95% confidence
interval for populations of actual (black) and simulated neurons (red). Simu-
lated data were generated by estimating stable, nondrifting tuning curves from
the recorded neurons and simulating spiking with Poisson noise. The average
number of spikes/neuron is shown to relate these results directly to Fig. 3.
Dashed lines denote 	 SEM across neurons.
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filtering to model dynamic place fields in hippocampal data
(Brown et al. 2001; Eden et al. 2004). Here, we use a basic
version of adaptive filtering techniques to assess dynamic
tuning curves in M1.

Rather than look for differences in tuning between blocks
of trials, adaptive filtering methods update the tuning curve
parameters after each observation. At each time-step, the
parameters are adjusted to reduce the size of prediction
errors. Here, we used the LMS based on steepest-descent
adaptive filtering. Larger errors result in larger parameter
changes, and the size of the parameter updates is determined
by a learning rate that is optimized separately. By adjusting
the tuning parameters dynamically, adaptive filtering allows
potential changes in tuning to be tracked from trial to trial.
Here, we assumed that only the PD changes from trial to
trial, whereas the baseline firing rate and modulation are
constant (see METHODS for details).

Adaptive filtering is able to track changes in the PDs of
simulated cosine-tuned neurons. The analysis is built on the
assumption that the process of spike generation is noisy and
that neurons undergo both drift (fixed changes) and diffusion or
fluctuation (random changes). In simulation, cosine-tuned neu-
rons with a constant drift in PD were accurately tracked for a
range of drift rates (Fig. 7A). For a drift rate in the range
	2°/trial and no fluctuations, the estimated drift rate had a
root-mean-square (RMS) error of only 0.07°/trial (Fig. 7B).
Fluctuations in PD could also be tracked, albeit less accurately
(Fig. 7C). For fluctuations with a SD between 0 and 20°/trial,
the estimated fluctuation had a RMS error of 2.5°/trial (Fig.
7D). It is important to note that while adaptive filtering excels at
tracking large changes in the parameters, estimates of small
fluctuations are substantially less accurate and sensitive to the
learning rate. With a RMS error of 2.5°/trial, it will be difficult to
detect the 0.16°/trial variation (1.8 	 2.5° over 120 trials), sug-

Fig. 5. Changes in tuning across blocks of
120 trials. Tuning curves for the 1st (black)
and 2nd (red) blocks of 120 trials for the 5
most stable neurons (A) and the 5 least stable
(B) from each of the 4 datasets. Error bars
denote mean firing rate 	 SEM; solid lines
denote cosine fits. The size [absolute (Abs.)
value] of the PD change is negatively corre-
lated with the baseline firing rate (C) as well
as modulation (D). Higher uncertainty in the
estimate of PD is correlated with larger ap-
parent drift (E). These correlations suggest
that estimated changes in PD could be due to
measurement noise.
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gested by the corrected SD analysis above. However, these sim-
ulation results suggest that if neurons in M1 are truly unstable
with large, random fluctuations in PD, adaptive filtering methods
may reveal this instability.

In actual data, adaptive filtering revealed some degree of
fluctuation in the PDs of a subset of M1 neurons. Of the 201
significantly tuned neurons from our four datasets, 177 neurons
were best fit by a stable rather than dynamic tuning curve. The
remaining 24 neurons (�12%) showed some degree of fluctua-

tion, with a median fluctuation of 2.1 	 0.3°/trial (Fig. 8A).
Assuming that PDs follow a Gaussian random walk, results from
Rokni et al. (2007), as well as the uncorrected block-by-block
analysis (Fig. 6), suggest fluctuations on the order of 2.1°–2.2°/
trial on average [22.9 	 3.2° over 120 trials for our analysis and
29 	 3° over 160 trials (Rokni et al. 2007)]. At first glance, this
subset of neurons thus appears to be fluctuating consistent with
previous results; however, even in this minority of neurons, it is
possible that the observed fluctuations are false positives.

Fig. 6. Estimated changes in PD. A: histograms of PD changes for each of the datasets separately and for all neurons for a block size of 40 trials. B: PD changes
for a block size of 120 trials. Black blocks denote changes that were significant at the 95% level by bootstrapping. Note that for blocks of 40 trials, the variability
of changes between blocks is substantially higher than for blocks of 120 trials, suggesting that measurement noise plays a large role in determining the magnitude
of PD changes. Red curves denote the PD changes observed when simulating stable Poisson neurons that were matched to have the same tuning as the observed
data.

Fig. 7. Adaptive filtering for detecting drift and
fluctuation. A: true and estimated PD for 3 simu-
lated neurons with PDs drifting 0.9, 0.45, and
0.07°/trial. Dashed lines denote the true, underly-
ing PD. B: estimated PD drift as a function of the
true drift for 512 simulation runs using data from
400 trials. C: true and estimated PD for 3 simu-
lated neurons with no mean drift, fluctuating 9,
4.5, and 0.7°/trial. D: estimated PD fluctuation as
a function of the true fluctuation for 512 simula-
tion runs. For data from 400 trials, the degree of
fluctuation is estimated fairly well but much less
accurately than the mean drift.
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The fact that these estimates are close to the RMS error
observed when estimating fluctuations in simulated data sug-
gests that some care is needed in interpreting these values. The
fluctuations found by adaptive filtering did improve spike
prediction. The average log-likelihood ratio for the dynamic
tuning model was 8.66 	 1.6 bits/trial, relative to a homoge-
nous Poisson process, whereas the average log-likelihood ratio
for the static tuning model was 8.56 	 1.6 bits/trial, relative to
a homogenous Poisson process (both on training data). How-
ever, with any finite amount of data, adaptive filtering methods
can find small false-positive fluctuations even for simulated,
stable neurons.

We examined whether the observed fluctuations may have
been false positives by again simulating stable cosine-tuned
neurons of varying modulation depth. In this case, after apply-
ing adaptive filtering, �4–5% of the stable neurons are mis-
takenly identified as fluctuating. With the use of these false
positives, we constructed a null distribution and compared this
distribution with the subset of observed fluctuating neurons
(Fig. 8B). The fluctuations observed in 12% of the recorded
neurons are consistent with the results from stable neurons,
suggesting that they may indeed be false positives. The null
results suggest that for typical physiologically realistic tuning
curve parameters, fluctuations have to be rather large before
they are detectable by adaptive filtering (�5°/trial).

DISCUSSION

We have presented results from two approaches aimed at
detecting fluctuations in the PDs of cosine-tuned neurons in
M1. With the use of bootstrapping on simulations of stable
neurons, we have quantified how measurement uncertainty or
confidence interval size is affected by modulation depth and
the amount of data available. In real data, bootstrapping allows
us to estimate changes between blocks of trials and test for
significance in a way that directly captures the measurement
uncertainty. Finally, we used adaptive filtering techniques to
model trial-by-trial changes in PD explicitly. After comparing
the results with those from simulated, stable neurons, we find
no evidence for large fluctuations in PD using either bootstrap-
ping or adaptive filtering. Small fluctuations in PD may exist,
but detecting these changes is difficult in the presence of
spiking noise.

When examining the properties of neural discharge, the
experimental manipulations, as well as the statistical ap-

proaches used for analysis, will influence the interpretation of
the results. In this report, we have demonstrated that the
uncertainty related to estimates of PD is directly related to the
total number of spikes, as well as the neuron’s modulation
depth over different reach directions. The greater the modula-
tion depth and the more data available (number of spikes), the
more certain one can be about the tuning of an individual
neuron. For typical experiments with limited amounts of data, the
uncertainty about PD can be quite large compared with the typical
effects of a manipulation—both on the order of a few tens of
degrees. Measurement noise is thus of central importance when
estimating how tuning curves change over time.

With the use of bootstrapping, we can determine confidence
intervals for each of the tuning curve parameters. For the
observed neurons, the confidence intervals for PD were rather
large—16.3° over 120 trials on average. This value fundamen-
tally limits how well we can detect changes in PD. For
instance, the SD of changes in PD between blocks of 120 trials
was 22.9 	 3.2°—the same order of magnitude as the confi-
dence interval. Comparing these changes with those from
stable, simulated neurons with matched tuning curves and
using a corrected measure, we find that the SD of changes is
likely closer to 1.8 	 2.5° over 120 trials. Adaptive filtering
estimates PD changes in a small subset of neurons on the order
of 2.1°/trial, but after comparing these results with stable,
simulated neurons, we find that these changes are again con-
sistent with stable PDs.

A previous study using large blocks of data reported similar
stability of tuning parameters (Chestek et al. 2007). However,
this study used free-reaching rather than a manipulandum and
analyzed neurons primarily from the dorsal premotor cortex
(PMd), leading the authors to speculate that the differences
between their results and those of Rokni et al. (2007) could be
due to experimental design or the specific population of neu-
rons. The experiments presented here are far closer in design to
those by Rokni et al. (2007), and yet, we find no significant PD
changes after corrections for measurement noise. Several stud-
ies have examined the stability of neural activity in the context
of brain-machine interfaces and observe that firing properties
may be highly variable (Carmena et al. 2005) or relatively
stable (Ganguly and Carmena 2009) depending on training.
However, interpreting these results can be difficult, since it is
often unclear how a given decoding scheme relates to the
tuning properties of individual neurons. Variability in the

Fig. 8. Adaptive filtering for actual data. For this analysis, we combined neurons from all 4 datasets (C, F, K, and R) and use only the significantly tuned neurons
(n � 201). Only 12% (n � 24) of these neurons showed some degree of fluctuation. A: trial-by-trial PD changes estimated by adaptive filtering for the subset
of neurons that appeared to be fluctuating. Note that 177 of the 201 neurons were better fit by a stable rather than a dynamic tuning curve. B: estimated fluctuation
as a function of the modulation for the subset of fluctuating neurons (black) and simulated, stable neurons (gray). The fluctuations revealed by adaptive filtering
are consistent with false positives.
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decoded behavior tends to be much higher than during normal
reaching, and brain-control itself may introduce certain con-
straints on movement coding.

As a practical matter in data analysis, anything that is not
part of the model but affects neural signals is considered noise.
We considered only Poisson noise, which is compatible with
the Fano factor, typically observed in cortical recordings (Ste-
vens and Zador 1998; Zacksenhouse et al. 2007). However,
there are many other factors beyond the monkey’s hand direc-
tion that potentially influence firing rates (Johnson et al. 2001),
including other kinematic variables such as reach speed
(Chestek et al. 2007) and limb posture (Caminiti et al. 1990;
Scott and Kalaska 1997), as well as added loads (Kalaska et al.
1989), cortical waves (Rubino et al. 2006), neuromodulator
concentrations (Ahern et al. 2002), oxygen concentration (Ji-
ang and Haddad 1994), and circadian rhythms (Barnes et al.
1977). Modeling these other sources of variability, whether
they are observed (Paninski et al. 2003; Saleh et al. 2010;
Truccolo et al. 2005; Wu and Hatsopoulos 2006) or unob-
served (Kulkarni and Paninski 2007; Stevenson et al. 2010)
would likely improve the estimates of PD stability. These
uncontrolled sources of variability could inflate estimates of
both real fluctuations and measurement uncertainty, and the
results here thus provide only an upper bound for the instability
of PDs of neurons in M1. If other sources of measurement
noise could be accounted for, the estimated changes in PD may
very well be even smaller.

Whereas our results suggest that PDs are substantially more
stable during normal reaching than some previous reports,
there is also convincing evidence that the relationship between
a given neuron’s activity and hand direction does change over
time. Tuning to hand direction changes on very short time-
scales due to changing kinematics and dynamics (Churchland
and Shenoy 2007; Hatsopoulos et al. 2004; Sergio et al. 2005),
as well as over longer timescales during sensorimotor learning
(Jarosiewicz et al. 2008; Li et al. 2001; Paz and Vaadia 2004).
While several studies have shown that tuning curves are
sensitive to the measurement epoch and specific task con-
straints (Hamel-Pâquet et al. 2006; Sergio et al. 2005), here, we
focused on a fixed, specific portion of the reaches (100 ms prior
to, through 300 ms after movement onset). This type of
analysis ignores the short-timescale kinematics and dynamics
of reaching and is aimed to test whether tuning curves are
stable on longer timescales during a well-learned task. Addi-
tionally, we have focused primarily on the stability and uncer-
tainty in estimates of PD. Both the modulation and baseline
firing rate of cosine-tuned neurons may show a higher degree
of instability (Chestek et al. 2007).

The stability of neuronal properties is of central importance
to many computational theories. If presynaptic neurons change
rapidly, then the motor system must either be redundant to the
extent that fluctuations do not affect behavior (Rokni et al.
2007), or postsynaptic neurons must adapt to allow for stable
movement and decisionmaking. Many behavioral models (e.g.,
Cheng and Sabes 2007; Wei and Körding 2009) have sug-
gested that learning is an ongoing process, where errors are
constantly being corrected, even during apparently stable be-
havior. This might suggest that the fluctuations in tuning, if
they exist, may actually be functional. Rather than being an
artifact of redundancy in the cortical representation of move-
ment, fluctuations may be a reflection of ongoing attempts to

correct small-reaching errors. While measurement noise makes
it difficult to distinguish between these hypotheses, methods
are being developed to isolate the effects of reach errors (Chase
et al. 2010; Scheidt et al. 2000) and better understand redun-
dancy in the motor system (Jarosiewicz et al. 2008). Statistical
techniques that allow modeling of nonstationary data (Kim et
al. 2006; Wu and Hatsopoulos 2008), as well as experimental
techniques that allow for longer-term recordings (Dickey et al.
2009; Tolias et al. 2007), should both serve to reveal the
more-detailed structure of tuning curve dynamics during learn-
ing as well as stable reaching.
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