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Abstract A key observation in systems neuroscience is that
neural responses vary, even in controlled settings where stim-
uli are held constant.Many statistical models assume that trial-
to-trial spike count variability is Poisson, but there is consid-
erable evidence that neurons can be substantially more or less
variable than Poisson depending on the stimuli, attentional
state, and brain area. Here we examine a set of spike count
models based on the Conway-Maxwell-Poisson (COM-
Poisson) distribution that can flexibly account for both over-
and under-dispersion in spike count data. We illustrate appli-
cations of this noise model for Bayesian estimation of tuning
curves and peri-stimulus time histograms. We find that COM-
Poisson models with group/observation-level dispersion,
where spike count variability is a function of time or stimulus,
produce more accurate descriptions of spike counts compared
to Poisson models as well as negative-binomial models often
used as alternatives. Since dispersion is one determinant of
parameter standard errors, COM-Poissonmodels are also like-
ly to yield more accurate model comparison. More generally,

these methods provide a useful, model-based framework for
inferring both the mean and variability of neural responses.
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1 Introduction

Variability in neural responses is ubiquitous due to cellular
processes, such as channel dynamics and probabilistic vesicle
release (Faisal et al. 2008), as well as, changes in network state
or neuromodulation (Arieli et al. 1996; Masquelier 2013).
Increasing variability, in general, reduces how accurately in-
formation about the external world can be decoded from neu-
ral responses (van Steveninck et al. 1997; Werner and
Mountcastle 1963). However, variability may also serve a
functional role (Ermentrout et al. 2008; Hoyer et al. 2003;
Stein et al. 2005) and can act as a signature of decisionmaking
(A. K. Churchland et al. 2011), movement preparation (M. M.
Churchland et al. 2006), or stimulus onset (M. M. Churchland
et al. 2010). Although many model-based methods focus on
describing the mean spiking response for a given stimulus or
task, new techniques that also quantify how spike variability
changes as a function of stimulus/movement parameters may
provide another dimension for understanding the neural code.
Here we examine a set of models that assume spike counts are
distributed according to a Conway-Maxwell-Poisson (COM-
Poisson) distribution with group/observation-level dispersion
(Sellers et al. 2012). This approach can describe both over-
and under-dispersion and can flexibly capture patterns of var-
iability in spike count data when fitting tuning curves and peri-
stimulus time histograms (PSTH).

Although many tuning curve and PSTH models assume
that spike counts are Poisson distributed, where the variance
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of the spike counts equals the mean, in practice, spike count
variability can be both under-dispersed—where the count var-
iance is less than the mean count – or over-dispersed – where
variance is greater than the mean count. In early sensory sys-
tems, for instance, neurons appear to be much more precise,
with less variability than would be predicted by the Poisson
model (Berry et al. 1997; DeWeese et al. 2003). Variability
appears to increase along sensory pathways (Kara et al. 2000;
Vogel et al. 2005), and can be substantially less precise than
Poisson in motor areas (Lee et al. 1998). Quantifying the var-
iability present in spike observations (Nawrot 2010;
Shinomoto et al. 2009) and interpreting the underlying causes
of variability (Azouz and Gray 1999; Bair and Koch 1996;
Carandini 2004; Deweese and Zador 2004; Schölvinck et al.
2015; Softky and Koch 1993; Zador 1998) are fundamental
challenges to deciphering the neural code. In many cases,
Poisson models where the rate is solely a function of the stim-
ulus fail to provide an accurate description of spike count
variability across trials (Amarasingham et al. 2006; Maimon
and Assad 2009).

One explanation for the deviations from Poisson firing
is that spike timing is driven, not just by extrinsic stimuli
or behavior, but by single-neuron dynamics and other
intrinsic factors. By taking these different factors into
account, many models are able capture under-dispersion
or over-dispersion across trials (Harris et al. 2003;
Truccolo et al. 2005). Models of spike dynamics and
history dependence (Berry and Meister 1998; Keat
et al. 2001; Pillow et al. 2005; Reich et al. 1997;
Uzzell and Chichilnisky 2004) are able to produce un-
der-dispersion, while models using covariates that vary
from trial to trial, such as interactions between neurons
(Pillow et al. 2008; Stevenson et al. 2008), local field
potentials (Harris et al. 2003; Kelly et al. 2010), or latent
variables (Czanner et al. 2008; Eden et al. 2004;
Paninski et al. 2010), are able to produce over-disper-
sion. However, fitting such detailed models may not al-
ways desirable. More importantly, since most rate-models
only describe the mean spike count, there is typically no
guarantee that the observed and model variability will
match; although, see (Gao et al. 2015; Lansky and
Vaillant 2000).

The COM-Poisson model has several desirable properties.
Most importantly it is able to capture both over- and under-
dispersion (Shmueli et al. 2004). It can thus describe neural
responses when spiking is less variable than Poisson as well as
more variable. By modeling variability at the group- or obser-
vation-level, we show how this approach can also account for
cases where the same neuron exhibits different levels of dis-
persion in response to different stimuli (tuning curves) or as a
function of time (PSTHs). In contrast to descriptive statistics
such as the Fano Factor, the COM-Poisson regression ap-
proach is model-based and allows principled model

comparison. Using both simulated and experimental data we
show how different noise models (e.g. Poisson, negative bi-
nomial, COM-Poisson, and generalized count) can be evalu-
ated in terms of their ability to accurately predict spike counts.
Here we find that failing to take dispersion into account results
in less accurate prediction and results in biased estimates of
parameter standard errors.

2 Methods

2.1 Conway-Maxwell-Poisson models

Here we model non-Poisson spike count variability using the
COM-Poisson distribution. The likelihood for the COM-
Poisson distribution is given by

p y
���λ; ν� �

¼ λy

y!ν
1

Z λ; νð Þ

where the probability of observing y counts is a function of the

parameters λ and ν, normalized by a factor Z λ; νð Þ ¼ ∑
∞

y¼0

λy

y!ν
.

Note that for ν= 1 the COM-Poisson likelihood has Z(λ,
ν) = eλ, giving the Poisson likelihood. However, unlike the
Poisson distribution, where the mean is always equal to the
variance, the COM-Poisson distribution can exhibit both over-
dispersion and under-dispersion. ν<1 leads to over-dispersion
with var[y] >E[y], and ν> 1 leads under-dispersion with
var[y] <E[y].

In addition to the Poisson distribution, the COM-Poisson
also contains the Bernoulli and geometric distributions as a
special cases (Sellers et al. 2012; Shmueli et al. 2004) when
ν→∞ and ν→0, respectively.

Though there is no closed-form expression for the
normalization Z(λ, ν), in practice we can compute it nu-
merically with a finite sum up to some number of pos-
sibly observable spike counts (Minka et al. 2003). Since
early truncation can result in misestimation of the likeli-
hood, here we use the greater of 1000 or twice the max-
imum of the observed counts for the tuning curve data
and the greater of 100 or twice the maximum of the
observed counts for the PSTH data. More efficient
methods based on asymptotic approximations or lookup
tables may yield substantial speedups.

2.2 Generalized linear models with COM-Poisson
observations

Although the lack of closed-form normalization makes
inference more computationally difficult, the COM-
Poisson is an exponential family distribution (Sellers
and Shmueli 2010; Sellers et al. 2012; Shmueli et al.
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2004), and we can construct a generalized linear model
using the link functions

log λð Þ ¼ Xβ
log νð Þ ¼ Gγ

where X and G are covariates and β and γ are parameter
vectors. Here we distinguish between two cases of COM-
Poisson regression: the constant dispersion parameter
case—where ν is fixed—and the case with observation-
or group-level dispersion – where ν varies (Sellers and
Shmueli 2009, 2013).

For tuning curve models, similar to (Sanger 1996), we use a
Fourier basis in X and G up to some frequency n and m to
generate smooth estimates of both the mean spike count and,
in this case, dispersion as a function of a circular stimulus/
movement parameter θ.

X ¼ 1 sinθ cosθ ⋯ sinnθ cosnθ½ �

G ¼ 1 sinθ cosθ ⋯ sinmθ cosmθ½ �

For PSTH models, instead of a Fourier basis, we use a B-
spline basis (De Boor 1978) with n and m equally-spaced
knots, for X and G. Sampling knot locations adaptively, for
instance using Bayesian adaptive regression splines (BARS),
has been shown to better capture the fast changes present in
PSTHs (Dimatteo et al. 2001; Kass et al. 2003; Kaufman et al.
2005), but, for simplicity, we opt for a fixed basis here. In both
the tuning curve and PSTH models we can enforce a constant
dispersion parameter by setting m=0.

2.3 Maximum likelihood, MAP estimation, and Bayesian
inference

Since the COM-Poisson distribution is exponential family,
maximum likelihood estimates for β and γ can be found with
iterative reweighted least squares, IRLS (Sellers and Shmueli
2010). Here we use a Bayesian approach—adding priors to
aid convergence and avoid over-fitting. As with other gener-
alized linear models (Gelman et al. 2008; Zhao and Iyengar
2010), under certain combinations of observations and covar-
iates the COM-Poisson model fails to converge. In particular,
convergence issues occur when the Fisher scoring matrix
GTWG or XTWX is low rank, given the diagonal weight matrix
W from IRLS. Also as with other GLMs, increasing model
complexity (e.g. large n and m above) can lead to over-fitting.
Adding priors allows us to flexibly overcome both these is-
sues. Here we use normal priors with no penalty on the inter-
cept term

β>1eNormal 0;σβ

� �
γ>1eNormal 0;σγ

� �

where β>1 and γ>1 denote the coefficients excepting the
intercept. For the tuning curve models here we use n= 2,
m = 1 and for the PSTH models we use n = 20,m = 8
knots, except where noted. In both cases we use
σβ = 10,σγ= 1 (after X and G have been standardized),
but as with other regularization schemes the model com-
plexity and hyper-parameters can generally be adjusted
depending on the data. Here, in illustrating the model,
we have chosen these settings to give qualitatively good
results, but other settings as well as priors (Kadane et al.
2006), may provide greater accuracy. To find the MAP
(maximum a posteriori) estimates or posterior samples
for β and γ we use LBFGS and No U-Turn Sampling
(NUTS), respectively (Hoffman and Gelman 2014). Both
algorithms are implemented through the Stan sampling
library (BStan: A C++ Library for Probability and
Sampling, Version 2.8.0^ 2015).

The major computational difference between the
Poisson and COM-Poisson regression is that with the
COM-Poisson model we need to numerically evaluate
the normalization factor Z(λ, ν) every time the likelihood
is evaluated. However, there is also a small difference in
the structure of the likelihood calculation. If spike counts
{y1… yn} are observed on n different trials of a fixed λ,
with Poisson observations we only need compute the
log-likelihood for the sum

X
logp yi

���λ� �
¼

X
yilogλ−

X
λ−

X
logyi! ¼logp

X
yi

���nλ� �
:

Since a sum of Poisson random variables is Poisson, ∑y
provides a sufficient statistic for λ. For COM-Poisson random
variables (Shmueli et al. 2004), on the other hand, we have
∑ l o g p ( y i |λ , ν ) = ∑ y i l o g λ − ∑ ν l o g y i ! − ∑Z (λ ,
ν) = logλ∑yi−ν∑ log yi !−nZ(λ,ν).

In this case, ∑y and ∑ log y ! together provide sufficient
statistics for λ and ν. We find that when fitting PSTHs it is
more efficient to use these sufficient statistics so that, for p
unique stimuli/time-points, we only need evaluate the likeli-
hoodO(p) rather thanO(np) times. As∑y become large, how-
ever, calculating Z(λ,ν) requires a larger support and some of
this efficiency is lost.

2.4 Model comparison

To determine whether the COM-Poisson model is useful
for describing spike counts in practice, we use the same
methods (basis and MAP/sampling procedures) to fit
Poisson, negative binomial, and generalized count obser-
vation models. The Poisson and negative binomial
models have been used extensively, elsewhere (Brown
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et al. 2003; Cameron and Trivedi 2001). Briefly, the
canonical GLM with Poisson observations is given by,

log λð Þ ¼ Xβ

p y
���λ� �

¼ λye−λ

y!

And the canonical negative binomial model is given by,

log μð Þ ¼ Xβ

p y
���μ; r� �

¼ r

r þ μ

� �r Γ r þ yð Þ
Γ yþ 1ð ÞΓ rð Þ

μ
r þ μ

� �y

where the additional parameter r (>0) allows over-dispersion
and Γ(⋅) denotes the gamma function. One advantage of the
Poisson and negative binomial models is that, unlike the
COM-Poisson, they do have closed-from normalization.
However, the Poisson model is always equi-dispersed while
the negative binomial model is unable to describe under-

dispersed data, since the variance μþ μ2

r is always greater
than or equal to the mean μ. Similar to the COM-Poisson
model, the negative binomial model can be extended to model
group-level dispersion (Taouali et al. 2016). Here wemake the
dispersion parameter r a function of time/stimuli by using the
reparameterization κ=1/r and assuming log(κ) =Gγ.

In addition to these two canonical models we also imple-
ment the recently described generalized count distribution (del
Castillo and Pérez-Casany 2005; Gao et al. 2015). Briefly, the
generalized count model takes the form

θ ¼ Xβ

p y
���θ; g ⋅ð Þ

� �
¼ exp θyþ g yð Þð Þ

y!Z θ; g ⋅ð Þð Þ

By varying the form of function g(⋅) this model contains the
Poisson, negative binomial, and COM-Poisson distributions,
among others, as special cases. In particular, after moving the
intercept term out of X into g(y), Poisson regression has
g(y) =αy, negative binomial regression has g(y) =αy+ log(y+
r − 1) !, and COM-Poisson regression has g(y) =αy + (1
−ν)log y !. Fixing g(0)=0 ensures model identifiability, while
fixing the support and adding additional smoothness con-
straints can allow arbitrary functions of y to be fit. Here, to
examine to what extent our results are affected by the specific
distributional assumptions, we use apply methods and code
from (Gao et al. 2015) and fit the full function g(⋅) with a
quadratic penalty on the second differences (setting the
hyperparameter λg=50, with no penalty on β, and LBFGS
optimization).

Similar to the COM-Poisson distribution, the generalized
count distribution has the advantage that it allows both over-
and under-dispersion under certain parameterizations of g(y)
and the disadvantage that the normalization Z(θ,g(⋅)) typically
needs to computed numerically. Due to its flexibility, it is, in

some sense, guaranteed to out-perform the other models for a
fixed stimulus given enough data.

Since the COM-Poisson model (ν=1), the negative bino-
mial model (r→∞), and the generalized count model
(g(y) =αy) all contain the Poisson as a special case, we use
the cross-validated (20-fold) log likelihood ratio relative to a
homogeneous (constant λ Poisson model as a common point
of comparison during our tuning curve analyses.

2.5 Simulating the relationship between variable input
current and spike count variability

To illustrate the flexible origins of spike count variability
(Fig. 1), we use an adaptive exponential integrate and fire
model (Brette and Gerstner 2005) whose dynamics are given
by

C
dV

dt
¼ −gL V−ELð Þ þ gLΔTexp

V−VT

ΔT

� �
−wþ I tð Þ

τw
dw

dt
¼ a V−ELð Þ−w

Spikes are emitted when V>Vthresh and the state is updated
V→Vreset, w→w+b following each spike. Here we use pa-
rameters from (Brette and Gerstner 2005) based on a regular
spiking pyramidal neuron: EL=−70 mV, Vthresh=−50 mV,
Vrese t = −70 mV, C=281pF, gL = 30 nS, ΔT = 2 mV,
τw=144 ms, a = 4 nS, b =80 pA. However, similar results
can be obtained with a wide range of parameter settings as
well as other voltage models (Zador 1998).

2.6 Experimental Fano factors

To quantify dispersion in spike counts empirically – as op-
posed to using a model—we use the Fano Factor F=σ2/μ.
Using data from a fixed stimulus/time window we estimate
the sample mean and variance then quantify uncertainty about
the Fano Factor using Bayesian bootstrapping (Rubin 1981).
In particular, we generate bootstrap samples by drawing
weights wk for each observation from a uniform Dirichlet dis-
tribution (α=1 for all observations). We then compute the
weighted mean μ′=∑wkyk and variance σ′2 =∑wk(yk−μ′)2 -
whose ratio provides a bootstrap sample for the Fano Factor
itself. After many (in this case, 1000) samples we have a
smooth distribution that can be used to estimate uncertainty
about the Fano Factor. With a small number of count obser-
vations Bayesian boostrap typically provides a more accurate
estimate of quantiles than the traditional bootstrap. See (Eden
and Kramer 2010) for an alternative approach.

Fano Factors reported in Fig. 2c were collected, ad-hoc
from ten studies. Since the goal of this collection is simply
to illustrate the range of realistic spike count variability, data
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come from a wide range of species, brain areas, and tasks with
substantial heterogeneity among firing rates and windows
used to compute F. Values for the mean Fano Factor, standard
deviation, and number of neurons were collected from text
and digitized figures (see Supplementary Material for list of
sources).

2.7 Tuning curve data

Tuning curve data was obtained from the neural signal archive
(neuralsignal.org) nsa2004.6b and nsa2004.6c and consists of
56 recordings from 45 cells in areas MT/V5 of anesthetized
(sufentanil), paralyzed (vecuronium) adult male macaque
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spikes, and the initial voltage is random. b) The same model neuron
responding to current whose trial-to-trial variability is a function of
time. The average current (top) is denoted by the light trace with
standard deviation denoted by the gray band. A single current trace for
a typical trial is also shown. Note that the Fano Factor varies over time
(50 ms sliding window) and can be both less than 1 (under-dispersion)
and greater than 1 (over-dispersion)
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with the median and quartiles (gray lines)
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monkeys (macaca fascicularis, N=5 and macaca nemestrina,
N=1). For details of the experimental methods see (Kohn and
Movshon 2003). Briefly, visual stimuli consisted of drifting
sine-wave gratings and moving dots (at 100 % contrast/coher-
ence). Both grating and random dot stimuli were presented
with 16 movement directions plus 1 blank stimulus presented
in random order with each trial lasting 1000–1280 ms and
presented continuously, without breaks. The total number of
trials varied between 51 and 204. Here we use spike counts
50–550 ms following stimulus onset to estimate direction
tuning and ignore responses to the blank stimulus.

2.8 PSTH data

PSTH data was obtained from the neural signal archive
(neuralsignal.org) nsa2009.1, which consists of 52 recordings
from 26 cells in areas MT/V5 of an awake, fixating adult male
macaque monkey (macaca mulatta, N=1) performing a direc-
tion discrimination task. For details of the experimental
methods see (Britten et al. 1992). Here trials are neural re-
sponses to repeated presentations of particular incoherent, ran-
dom dot patterns, either with frozen noise or with a variable
seed. Trials lasted 2000–2048 ms, and recording lengths var-
ied from 14 to 210 trials. See previous analysis in (Bair and
Koch 1996).

3 Results

Although many models assume that spike counts are Poisson
distributed, the fact that spiking is close to Poisson is some-
what remarkable when you consider how spikes are generat-
ed. Previous work on voltage-models and intracellular exper-
iments has illustrated that the reliability of spiking over time
and across trials heavily depends on the input that a neuron
receives (Zador 1998). In a simulated neuron model (see
Methods), neurons can readily generate trial-to-trial variability
ranging from over-dispersed to highly under-dispersed
(Fig. 1). If the synaptic input is reliable then spike count var-
iability can be very low (Mainen and Sejnowski 1995), but
even when the input to a single neuron is highly controlled,
variations in the initial state of the neuron can produce irreg-
ular firing patterns (Fig. 1a). In vivo, differences in intrinsic
covariates, such as network state (Arieli et al. 1996), will lead
to changes in the exact input that a neuron receives. Small
variations in synaptic input and membrane potential appear
to be amplified by the non-linear thresholding effect of spike
generation (Carandini 2004), and spiking responses can easily
be both under- and over-dispersed (Shadlen and Newsome
1998). In general, synaptic input varies both over time and
from trial to trial (Fig. 1b), producing corresponding varia-
tions in the mean firing rate and the spike count variability.

Rather than modeling the synaptic input and membrane
potential explicitly, here we aim to describe the distribution
of spike counts statistically. Whereas the Poisson model has a
single mean parameter λ , the COM-Poisson model has two
parameters λ and ν that, together, determine both the spike
count mean and variance. ν< 1 results in over-dispersion
where the variance of spike counts is greater than the mean,
while ν>1 results in under-dispersion where the variance is
less than the mean (Fig. 2a). Several models have been used to
describe either under-dispersion (e.g. binomial) or over-
dispersion (e.g. negative binomial) alone (Fig. 2b).
However, the ability to model both regimes may be a useful
property of COM-Poisson models, since, empirically, neurons
tend to show both types of behavior (Fig. 2c).

3.1 COM-Poisson models of tuning curves

To illustrate how inferring dispersion explicitly can provide
another dimension to neural coding, we fit tuning curve
models to simulated, non-Poisson spike counts. Figure 3
shows spike counts simulated from three COM-Poisson
tuning curve models along with Bayesian model fits (samples
from the posterior) for Poisson and COM-Poisson regression.
In each case, the Poisson model does recover the tuning curve
for mean spike counts. However, since the Poisson model
does not have an explicit representation of variability, the pre-
dicted Fano Factor, the ratio of the spike count variance to the
spike count mean, is always 1. In contrast, the COM-Poisson
model allows explicit inference of the Fano Factor, and accu-
rately recovers the true Fano Factor for under-dispersed
(Fig. 3a) and over-dispersed (Fig. 3b) spiking, as well as for
a neuron that has both under- and over-dispersion depending
on the stimulus (Fig. 3c). For the examples show here, we use
a Fourier basis and stimulate group-level dispersion where the
relationship between the mean and variance is not fixed, but
depends on the stimulus. COM-Poisson models with a con-
stant dispersion parameter, on the other hand, are only be able
to describe data that is either under- or over-dispersed, not
both.

In experimental data, we find that tuning curve estimation
with COM-Poisson noise models is more accurate than the
Poisson models, as well as, negative binomial models fre-
quently used to describe over-dispersed responses (Fig. 4).
In data from MT/V5 recorded during presentation of moving
sine-wave grating stimuli, we find that, for some neurons, the
dispersion can be both under- and over-dispersed depending
on the stimulus (Fig. 4a). We also find that the pattern of
dispersion can be negatively correlated with the mean re-
sponse (Fig. 4b). Note that, in general, a constant dispersion
parameter means that the mean-variance relationship (Fig. 2b)
is fixed. Curvature in the mean-variance relationship allows
the Fano Factor to vary as a function of the stimulus but in a
highly constrained way. A single, fixed mean-variance

J Comput Neurosci



relationship appears to be insufficient to describe patterns of
spike count variability found experimentally. The examples
here highlight the cases where a COM-Poisson model with
group-level dispersion, by allowing both over- and under-
dispersion and flexible mean-variance relationships, may pro-
vide a more accurate account of the underlying structure of the
spike counts.

Across the n=56 neurons in these data we find that the
COM-Poisson model with a constant dispersion parameter is
more accurate (Fig. 5a) than both the Poisson model (26±6 %,
two-tailed, paired t-test on the cross-validated log likelihood
ratio, p<0.001) and negative binomial model (1.2±0.002 %,
p=0.002). Additionally, the COM-Poisson model with
group-level dispersion out-performs the model with con-
stant dispersion parameter (0.4±0.001 %, p< 0.001). In
this dataset, the largest improvement, compared to the
Poisson model, appears to be due to allowing over-dis-
persion, but allowing under-dispersion and flexible
mean-variance relationships also improve model perfor-
mance slightly. Allowing deviations from the Poisson
model also improves reconstruction of Fano Factors
(Fig. 5b). In this case, allowing over-dispersion improves
the Fano Factor RMSE relative to the Poisson model by
2 % with the negative binomial model, 34 % with the
COM-Poisson, 40 % with the COM-Poisson model with
group-level dispersion. Here, since the majority of neu-
rons in this dataset are over-dispersed with convex mean-
variance relationships, the negative binomial model per-
forms quite well. However, as expected, the COM-

Poisson model with group-level dispersion does tend to
perform better for those cases where spike counts are
less-dispersed (Fig. 5c, r= -0.16, p= 0.22) and for neu-
rons where the Fano Factor and mean response as a
function of the stimulus are not strongly correlated
(Fig. 5d, r= -0.41, p= 0.002).

For the data here we also compare the accuracy of the
COM-Poisson models to a recently described generalized
count model that also allows both over- and under-
dispersion (Gao et al. 2015). The generalized count model
contains the Poisson, negative binomial, and COM-
Poisson models as special cases, and, might generally be
expected to out-perform the other models with fixed mean-
variance relationships (see Methods). However, in this
case, we find that both the negative binomial (10±8 %,
p= 0.1) and COM-Poisson models (10±7 %, p= 0.5) out-
perform the generalized count model. One explanation for
these results may be that, with limited data (3–12 trials per
stimulus), the constraints on the mean-variance relation-
ships imposed by the negative binomial and COM-
Poisson models are beneficial. Allowing too much flexibil-
ity in the mean-variance relationship fit by the generalized
count model is likely to lead to over-fitting, even with the
smoothing constraints implemented here.

3.2 Dispersion affects standard errors

In the examples above we show how Poisson models
tend to provide accurate estimates of the mean, even
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when the data is non-Poisson. Poisson regression is con-
sistent when the data is not equi-dispersed. However, one
aspect of Poisson models that is often over-looked in
neuroscience is that, when data is non-Poisson, standard
errors and confidence intervals under the Poisson model
are incorrect (Cameron and Trivedi 2001). As with any
model, it is important to consider what happens when the
assumptions are not met.

For canonical Poisson regression

yiePoisson exp xTi β
� �� �

:

And the standard errors of the maximum likelihood esti-

mate β̂ follow from the covariance matrix

var β̂
���y� �

¼
X

i
xix

T
i exp xTi β̂

� �� �−1
:

However, for data that is not equi-dispersed a correction is
needed: most commonly,

var β̂
���y� �

¼ α
X

i
xix

T
i exp xTi β̂

� �� �−1
:

Under this correction, the dispersion is assumed fixed, with
the dispersion parameter α estimated by

α̂ ¼
X

i
yi−ŷi

� �2
=ŷi

n−kð Þ

where n is the number of observations and k is the number of
covariates. This adjustment results in what is sometimes
known as a quasi-Poisson or quasi-Maximum Likelihood
(QML) model where the mean count (determined by β) is
estimated by traditional Poisson maximum likelihood estima-
tion, but over- or under-dispersion can be accounted for during
prediction and inference by estimating a dispersion parameter
α post-hoc (Gourieroux et al. 1984). Without this QML

Fig. 4 Model fits for four different Bayesian tuning curve models to data
from two typical MT neurons in response to moving sine-wave gratings.
a, b) Spike rasters in response to the moving sine-wave grating stimuli
(50-700ms after stimulus onset). Colors denote different grating
directions. C,D) Tuning curve and Fano factor for the different
Bayesian models. Individual colored lines denote samples from the

posterior distribution for the Poisson, Negative Binomial, Conway-
Maxwell Poisson with constant dispersion, and COM-Poisson with
group-level dispersion, respectively. For the Fano factor, dots and error
bars denote the median and inter-quartile range estimated from the data
using Bayesian bootstraping
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correction Poisson regression will tend to be overly-confident
when data is over-dispersed (α>1) and under-confident when
data is under-dispersed (α<1).

Consider estimating a single parameter λ̂ to describe
n count observations with unknown mean count λ.
Since the Poisson model assumes that the count vari-
ance is equal to the mean, the standard error for the

Poisson model is
ffiffiffiffiffiffiffiffi
λ̂=n

q
and for the QML modelffiffiffiffiffiffiffiffiffiffiffi

α̂λ̂=n
q

where, in this case, k= 1 and α̂ ¼ F̂, the Fano

Factor from the sample variance and mean. Without the
correction, the Poisson model will thus misestimate the

standard error by a factor of
ffiffiffiffî
F

p
, even as the number

of observations increases. That is, with F =4 the stan-
dard error under the Poisson model is half what it
should be, while with F =0.25 the standard error is
twice what it should be.

Many experiments in neuroscience rely on comparing the
parameters of Poisson regression models, e.g. tuning width
before and after adaptation or preferred direction over time.
Since misspecification of the noise model can result in over-
or under-confidence, model-based results that fail to correct
for non-Poisson spiking may need a second look, even when
standard errors or confidence intervals are determined by
Bayesian methods or bootstrapping (Cronin et al. 2010;
Stevenson et al. 2011). Note for instance, that in the examples
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Fig. 5 Model performance on the n=56 neurons in nsa2004.6. a) Cross-
validated (20-fold) log likelihood ratio between a homogeneous Poisson
model and tuning curve models with six different noise assumptions:
Poisson, generalized count (GC), negative binomial (NB), negative
binomial with group-level dispersion, Conway-Maxwell Poisson
(COM-P), and Conway-Maxwell Poisson with group-level dispersion.
Error bars denote SEM. b) Square-root of the mean squared error
(RMSE) for reconstructing the Fano Factor under each of the six
models - fit to all data (not cross-validated). Bars denote median. Error
bars denote inter-quartile range. c) Log likelihood ratio between the
COM-Poisson model with group-level dispersion and the negative
binomial model as a function of Fano Factor (averaged across stimulus
conditions). The negative binomial model only captures over-dispersion,

and the COM-Poisson model tends to be better for smaller Fano Factors.
d) Log likelihood ratio between the COM-Poisson model with group-
level dispersion and the negative binomial model as a function of the
correlation between the Fano Factor and the mean rate for each
stimulus condition. Under the negative binomial model, since the mean-
variance relationship is convex, negative correlations between the Fano
Factor and mean spike count are not possible. The COM-Poisson model
with group-level dispersion, on the other hand, allows more flexible
mean-variance relationships and tends to outperform the Negative
Binomial model when the Fano Factor and mean spike count are
uncorrelated or negatively correlated. Black line denotes linear fit to the
data. Dashed curves denote 95 % confidence intervals
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Fig. 6 An illustration of how the choice of noise model affects the
estimation of standard errors. In this case, we consider estimating a
single mean spike count under different Fano Factors. Sampling from
COM-Poisson distributions with fixed mean and different variances, we
find that both the negative binomial and COM-Poisson model are able to
accurately track the true standard error (gray curve, QML) for over-
dispersed data, but the negative binomial model is unable to track
standard errors for under-dispersed data. For comparison, when the
population mean and variance are known, the Poisson model produces
a fixed estimate of standard error (black line) that does not take dispersion
into account. This problem can be remedied by using the Quasi-
Maximum Likelihood (QML) approach to calculate standard errors that
take dispersion into account post-hoc (gray curve)
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above, the samples from the posterior are less variable for the
COM-Poisson model than for the Poisson model when the
spike counts are under-dispersed (Fig. 3a) and vice versa
when spike counts are over-dispersed (Fig. 3b). In general,
by allowing the spike count variance to explicitly differ from
the mean, the COM-Poisson model produces confidence/
credibility intervals that take dispersion into account.

To illustrate this point empirically, we sample COM-
Poisson random variables (n=100) with a fixed mean E[y]
(5) and different variances var[y] (Fig. 6). If the moments were
known exactly, using the equations above, the Poisson model

should have constant standard errors given by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E y½ �=np

even
when the variance changes, while the QML model yields

corrected standard errors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var y½ �=np

. The standard errors un-
der the negative binomial and COM-Poisson models can be
calculated by evaluating the Hessian at the maximum likeli-
hood estimate or, as in the case shown here, by calculating the
standard deviation of samples from the posterior. When esti-
mating a single unknown mean from COM-Poisson samples,
we find that the COM-Poisson credibility intervals match the
intervals from QML (Fig. 6). The negative binomial model
also takes dispersion into account, to some extent. In this case,

the credibility intervals match for over-dispersed data, but not
for under-dispersed. In the more general case, however, we
have shown that dispersion may not even be fixed, suggesting
that group/observation-level dispersion estimates may be nec-
essary even with QML.

3.3 COM-Poisson models of PSTHs

Finally, to illustrate the flexibility of COM-Poisson regression
for spike count data, we apply these models to estimating peri-
stimulus time histograms (PSTHs). Just as modeling disper-
sion as a function of stimulus parameters can provide more
accurate descriptions of tuning curves, modeling dispersion as
a function of time may provide more accurate descriptions of
PSTHs. Here, rather than using a Fourier basis, we use B-
splines with equally spaced knots (see Methods). As with
tuning curves, modeling group-level dispersion allows us to
fit a wider range of both simulated and experimental data.

In simulation, modeling dispersion explicitly and at the
group-level allows us to fit cases where there is both over-
and under-dispersion in the same neuron (Fig. 7a), as well as
cases where the dispersion changes without changes in the
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values. Gray bars in the upper panels denote empirical mean spike
counts along with standard deviation. Gray dots in the lower panels
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mean (Fig. 7b). These two cases illustrate how dispersion can
act as an alternative dimension for the neural code.

Similarly, in experimental data the COM-Poisson model
allows accurate tracking of both the mean spike count and
its variance (Fig. 8). Here we find that, in general, models with
group-level dispersion are necessary to account for changes in
dispersion over time. Models with constant dispersion param-
eters are able to track changes in Fano Factor to some extent
(Fig. 8a), but the data are generally better fit when the mean-
variance relationship is flexible.

Across the n=46 neurons (with firing rates >0.5 Hz) in the
PSTH dataset we compare the same six models (Fig. 9) as with
the tuning curves. Here, with 20ms bins, the responses are
largely under-dispersed, and we find that the COM-Poisson
models with constant dispersion parameters out-perform both
the Poisson (60±33 %, one-tailed, paired t-test on the cross-
validated log likelihood ratio, p=0.05) and negative binomial
models (59±34 %, p=0.07). The generalized count models,
since they are able to capture under-dispersion, also out-
perform the Poisson (57±32%, p=0.01) and negative binomial
models (55±34 %, p=0.01), as well as the COM-Poisson mod-
el with constant dispersion parameter (3±3 %, p = 0.3).
However, the COM-Poisson model with group-level dispersion
slightly out-performs the generalized count model (8±3 %,
p=0.38). In this case, allowing under- and over-dispersion im-
proves the Fano Factor reconstruction (RMSE) compared to the
Poisson model by 19 % for the generalized count model, 0.1 %
for the negative binomial, 35 % for the COM-Poisson, and
37 % for the COM-Poisson with group-level dispersion.

4 Discussion

Inhomogeneous Poisson models that aim to describe spike
rate as a function of stimuli are often unable to effectively
capture the full range of spike count variability observed in
experimental data. Observed spike counts can be both over-
and under-dispersed and can have mean-variance relation-
ships that differ from common canonical count models. Here
we illustrate how Conway-Maxwell-Poisson models with
group-level dispersion provide an accurate description of
spike count statistics in these non-Poisson regimes. In tuning
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Fig. 9 Model performance for n = 46 PSTH responses in nsa2009.1. a)
Cross-validated (4-fold) log likelihood ratio between a homogeneous
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curve and PSTH data fromMT/V5 we find that COM-Poisson
models out-perform Poisson and negative binomial models
and naturally correct estimates of standard error for dispersion
in the observations. In general, for both tuning curves and
PSTHs, the COM-Poisson approach can accurately and flex-
ibly track both the spike count mean and variance.

Model-based methods have several important advantages
over traditional, descriptive measures of spike count variability,
such as the sample Fano Factor.Most importantly, model-based
methods are generally more efficient than descriptive ap-
proaches (Cronin et al. 2010; Kass et al. 2003); that is, they
can produce better estimates with smaller amounts of data. In
the cases shown here, for both tuning curves and PSTHs, using
COM-Poisson regression with a smooth basis allows us to
leverage the fact that spike count distributions tend to vary
smoothly over stimuli and time, where similar stimuli can be
expected to result in similar spike count distributions. Another
challenge of describing variability with sample Fano Factors is
that the results depend heavily on bin-size (Teich 1989).
Estimates from the COM-Poisson model still depend on bin-
size, but we can reduce our uncertainty about the dispersion in a
given bin by incorporating estimates from nearby bins.

An additional advantage of model-basedmethods is that they
allow principled model comparison (Cronin et al. 2010; Kottas
et al. 2012). Previous studies have used Bernoulli models to
describe under-dispersion (DeWeese et al. 2003) and negative
binomial (Scott and Pillow 2012) ormixturemodels (Goris et al.
2014; Moshitch and Nelken 2014; Shidara et al. 2005; Wiener
and Richmond 2003) to describe over-dispersion. Here we dem-
onstrate how the COM-Poissonmodel can be directly compared
to several alternative noise models: Poisson, negative binomial,
and generalized count models. By allowing both under- and
over-dispersion the COM-Poisson models generally provides a
more accurate description of the broader range of variability
present in neural responses. Although the COM-Poisson model
is a special case of the generalized count model, it is among the
simplest models that allows both under- and over-dispersion.
Here we find that allowing additional flexibility in the mean-
variance relationship by using the full generalized count model
only provides a slightly more accurate fits. By modeling group-
level dispersion we can add an additional level of flexibility
where the mean-variance relationship need not be fixed across
stimuli/time. Just as we can compare different noise models,
including group-level dispersion allows us to compare patterns
of dispersion. For instance, by comparing COM-Poisson
models withm=0 and m>0, we can examine whether a specific
pattern of variability across stimuli is consistent with the COM-
Poisson mean-variance relationship or whether additional pa-
rameters are necessary to capture these trends.

In some sense, the COM-Poissonmodels presented here only
provide a summary of spike count statistics without an explana-
tion for spike count variability. As mentioned above, many ex-
tensions of the inhomogeneous Poisson model are able to

account for non-Poisson variability by including intrinsic covar-
iates––variables that differ from trial-to-trial even with a fixed
stimulus (Masquelier 2013). While the COM-Poisson approach
simply describes variability, single-trial models can begin to
explain the sources of trial-to-trial variability. Similarly, rather
than modeling spike counts it is often useful to model detailed
spike timing. As binsizes become smaller, one challenge for
count models is that all observations begin to look like
Bernoulli random variables. In this limit, the difference between
the Poisson and COM-Poisson distributions is negligible and it
is often more sensible to use point-process formulations, either
Poisson or non-Poisson (Barbieri et al. 2001; Kass and Ventura
2001). Recently, point process models with power-law mean-
variance relationships have been developed that explicitly allow
both over- and under-dispersed spike counts (Koyama 2015),
and there has also been some preliminary work developing a
COM-Poisson process (Zhu et al. 2015). Although the COM-
Poisson approach presented here is a flexible way to summarize
the spike count statistics of tuning curves and PSTHs, it may not
always be the desired level of description.

Spike count variability appears to be an increasingly infor-
mative dimension for understanding the neural code (Hussar
and Pasternak 2010; Mandelblat-Cerf et al. 2009; Scaglione
et al. 2011). Here we have shown that in the absence of other
explanatory variables, COM-Poissonmodels with group-level
dispersion can provide a flexible, efficient description of spike
count variability. These models may, thus, be useful tools for
linking behavioral variables, such as decision making or
stimulus/movement onset, to spike count variability, even
with limited data. Although here we have focused on charac-
terizing single neuron variability, these and similar methods
may ultimately provide insight into population decoding
(Averbeck et al. 2006) and how the variability of multiple
neurons may be related (Cohen and Kohn 2011).

Acknowledgments Thanks to Mike DeWeese, Heather Read, and
Monty Escabi for helpful comments and discussions. IHS was supported
by an NSFComputing Innovation Fellowship (NSF-0937060 CIF-D-018).

Compliance with ethical standards

Conflict of interest The author declares that he has no conflict of
interest.

References

Amarasingham, A., Chen, T.-L., Geman, S., Harrison, M. T., &
Sheinberg, D. L. (2006). Spike count reliability and the Poisson
hypothesis. The Journal of Neuroscience : The Official Journal of
the Society for Neuroscience, 26(3), 801–809. doi:10.1523/
JNEUROSCI.2948-05.2006.

J Comput Neurosci

http://dx.doi.org/10.1523/JNEUROSCI.2948-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.2948-05.2006


Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of
ongoing activity: explanation of the large variability in evoked cor-
tical responses. Science, 273(5283), 1868–1871. doi:10.1126/
science.273.5283.1868.

Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations,
population coding and computation. Nature Reviews. Neuroscience,
7(5), 358–366.

Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to
response variability of cortical neurons in vivo. Journal of
Neuroscience, 19(6), 2209.

Bair, W., & Koch, C. (1996). Temporal precision of spike trains in
extrastriate cortex of the behaving macaque monkey. Neural
Computation, 8(6), 1185–1202. doi:10.1162/neco.1996.8.6.1185.

Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N.
(2001). Construction and analysis of non-Poisson stimulus-response
models of neural spiking activity. Journal of Neuroscience Methods,
105(1), 25–37. doi:10.1016/S0165-0270(00)00344-7.

Berry, M. J., & Meister, M. (1998). Refractoriness and neural precision.
The Journal of Neuroscience : The official Journal of the Society for
Neuroscience, 18(6), 2200–2211.

Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and
precision of retinal spike trains. Proceedings of the National
Academy of Sciences, 94(10), 5411–5416. doi:10.1073/pnas.94.10.
5411.

Brette, R., &Gerstner,W. (2005). Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity. Journal of
Neurophysiology, 94(5), 3637–3642. doi:10.1152/jn.00686.2005.

Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A.
(1992). The analysis of visual motion: a comparison of neuronal
and psychophysical performance. Journal of Neuroscience,
12(12), 4745.

Brown, E., Barbieri, R., Eden, U., & Frank, L. (2003). Likelihood
methods for neural data analysis. In J. Feng (Ed.), Computational
Neuroscience: A comprehensive approach (pp. 253–286). London:
Chapman and Hall.

Cameron, A. C., & Trivedi, P. K. (2001). Essentials of count data regres-
sion. In A companion to theoretical econometrics (Vol. 331).
Blackwell Publishing Ltd.

Carandini, M. (2004). Amplification of trial-to-trial response variability
by neurons in visual cortex. PLoS Biology, 2(9), E264. doi:10.1371/
journal.pbio.0020264.

Churchland, M. M., Yu, B. M., Ryu, S. I., Santhanam, G., & Shenoy, K.
V. (2006). Neural variability in premotor cortex provides a signature
of motor preparation. Journal of Neuroscience, 26(14), 3697.

Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen,
M. R., Corrado, G. S., et al. (2010). Stimulus onset quenches neural
variability: a widespread cortical phenomenon. Nature
Neuroscience, 13(3), 369–378. doi:10.1038/nn.2501.

Churchland, A. K., Kiani, R., Chaudhuri, R., Wang, X. J., Pouget, A., &
Shadlen, M. N. (2011). Variance as a signature of neural computa-
tions during decision making. Neuron, 69(4), 818–831. doi:10.
1016/j.neuron.2010.12.037.

Cohen, M. R., & Kohn, A. (2011). Measuring and interpreting neuronal
correlations. Nature Neuroscience, 14(7), 811–819. doi:10.1038/nn.
2842.

Cronin, B., Stevenson, I. H., Sur, M., & Kording, K. P. (2010).
Hierarchical Bayesian modeling and Markov Chain Monte Carlo
sampling for tuning-curve analysis. Journal of Neurophysiology,
103(1), 591.

Czanner, G., Eden, U. T., Wirth, S., Yanike, M., Suzuki, W. A., & Brown,
E. N. (2008). Analysis of between-trial and within-trial neural spik-
ing dynamics. Journal of Neurophysiology, 99(5), 2672–2693. doi:
10.1152/jn.00343.2007.

De Boor, C. (1978). A practical guide to splines. Applied mathematical
sciences 27. Verlag: Springer.

del Castillo, J., & Pérez-Casany, M. (2005). Overdispersed and
underdispersed Poisson generalizations. Journal of Statistical
Planning and Inference, 134(2), 486–500. doi:10.1016/j.jspi.2004.
04.019.

Deweese, M. R., & Zador, A. M. (2004). Shared and private variability in
the auditory cortex. Journal of Neurophysiology, 92(3), 1840–1855.
doi:10.1152/jn.00197.2004.

DeWeese, M. R., Wehr, M., & Zador, A. M. (2003). Binary spiking in
auditory cortex. The Journal of Neuroscience : The Official Journal
of the Society for Neuroscience, 23(21), 7940–7949.

Dimatteo, I., Genovese, C. R., & Kass, R. E. (2001). Bayesian curve-
fitting with free-knot splines. Biometrika, 88(4), 1055–1071. doi:10.
1093/biomet/88.4.1055.

Eden, U. T., & Kramer, M. a. (2010). Drawing inferences from Fano
factor calculations. Journal of Neuroscience Methods, 190(1),
149–152. doi:10.1016/j.jneumeth.2010.04.012.

Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., & Brown, E. N. (2004).
Dynamic analysis of neural encoding by point process adaptive
filtering. Neural Computation, 16(5), 971–998. doi:10.1162/
089976604773135069.

Ermentrout, G. B., Galán, R. F., & Urban, N. N. (2008). Reliability,
synchrony and noise. Trends in Neurosciences, 31(8), 428–434.

Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the
nervous system. Nature Reviews. Neuroscience, 9(4), 292–303.
doi:10.1038/nrn2258.

Gao, Y., Buesing, L., Shenoy, K. V, & Cunningham, J. P. (2015). High-
dimensional neural spike train analysis with generalized count linear
dynamical systems. In NIPS.

Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y.-S. (2008). A weakly
informative default prior distribution for logistic and other regres-
sion models. The Annals of Applied Statistics, 2(4), 1360–1383.
http://projecteuclid.org/euclid.aoas/1231424214. Accessed 30 July
2015.

Goris, R. L. T., Movshon, J. A., & Simoncelli, E. P. (2014). Partitioning
neuronal variability. Nature Neuroscience, 17(6), 858–65. doi:10.
1038/nn.3711.

Gourieroux, C., Monfort, A., & Trognon, A. (1984). Pseudo maximum
likelihood methods: applications to Poisson models. Econometrica,
52(3), 701–720.

Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsáki, G. (2003).
Organization of cell assemblies in the hippocampus. Nature,
424(6948), 552–556.

Hoffman, M., & Gelman, A. (2014). The no-U-turn sampler: adaptively
setting path lengths in Hamiltonian Monte Carlo. Journal of
Machine Learning Research, 15, 30.

Hoyer, P. O., Hyvarinen, A., & Hyvärinen, A. (2003). Interpreting neural
response variability as Monte Carlo sampling of the posterior (Vol.
15, pp. 277–284,). MIT Press.

Hussar, C., & Pasternak, T. (2010). Trial-to-trial variability of the prefron-
tal neurons reveals the nature of their engagement in a motion dis-
crimination task. Proceedings of the National Academy of Sciences
of the United States of America, 107(50), 21842–7. doi:10.1073/
pnas.1009956107.

Kadane, J. B., Shmueli, G., Minka, T. P., Borle, S., & Boatwright, P.
(2006). Conjugate analysis of the Conway-Maxwell-Poisson distri-
bution. Bayesian Analysis, 1(2), 363–374. http://projecteuclid.org/
euclid.ba/1340371067. Accessed 11 December 2015.

Kara, P., Reinagel, P., & Reid, R. C. (2000). Low response variability in
simultaneously recorded retinal, thalamic, and cortical neurons.
Neuron, 27(3), 635–646. doi:10.1016/S0896-6273(00)00072-6.

Kass, R. E., & Ventura, V. (2001). A spike-train probability model.
Neural Computation, 13(8), 1713–1720.

Kass, R. E., Ventura, V., & Cai, C. (2003). Statistical smoothing of neu-
ronal data. Network (Bristol, England), 14(1), 5–15. http://www.
ncbi.nlm.nih.gov/pubmed/12613549. Accessed 29 October 2015.

J Comput Neurosci

http://dx.doi.org/10.1126/science.273.5283.1868
http://dx.doi.org/10.1126/science.273.5283.1868
http://dx.doi.org/10.1162/neco.1996.8.6.1185
http://dx.doi.org/10.1016/S0165-0270(00)00344-7
http://dx.doi.org/10.1073/pnas.94.10.5411
http://dx.doi.org/10.1073/pnas.94.10.5411
http://dx.doi.org/10.1152/jn.00686.2005
http://dx.doi.org/10.1371/journal.pbio.0020264
http://dx.doi.org/10.1371/journal.pbio.0020264
http://dx.doi.org/10.1038/nn.2501
http://dx.doi.org/10.1016/j.neuron.2010.12.037
http://dx.doi.org/10.1016/j.neuron.2010.12.037
http://dx.doi.org/10.1038/nn.2842
http://dx.doi.org/10.1038/nn.2842
http://dx.doi.org/10.1152/jn.00343.2007
http://dx.doi.org/10.1016/j.jspi.2004.04.019
http://dx.doi.org/10.1016/j.jspi.2004.04.019
http://dx.doi.org/10.1152/jn.00197.2004
http://dx.doi.org/10.1093/biomet/88.4.1055
http://dx.doi.org/10.1093/biomet/88.4.1055
http://dx.doi.org/10.1016/j.jneumeth.2010.04.012
http://dx.doi.org/10.1162/089976604773135069
http://dx.doi.org/10.1162/089976604773135069
http://dx.doi.org/10.1038/nrn2258
http://projecteuclid.org/euclid.aoas/1231424214
http://dx.doi.org/10.1038/nn.3711
http://dx.doi.org/10.1038/nn.3711
http://dx.doi.org/10.1073/pnas.1009956107
http://dx.doi.org/10.1073/pnas.1009956107
http://projecteuclid.org/euclid.ba/1340371067
http://projecteuclid.org/euclid.ba/1340371067
http://dx.doi.org/10.1016/S0896-6273(00)00072-6
http://www.ncbi.nlm.nih.gov/pubmed/12613549
http://www.ncbi.nlm.nih.gov/pubmed/12613549


Kaufman, C. G., Ventura, V., & Kass, R. E. (2005). Spline-based non-
parametric regression for periodic functions and its application to
directional tuning of neurons, 24(14), 2255–2265.

Keat, J., Reinagel, P., Reid, R. C., &Meister, M. (2001). Predicting every
spike a model for the responses of visual neurons. Neuron, 30(3),
803–817.

Kelly, R. C., Smith, M. A., Kass, R. E., & Lee, T. S. (2010). Local field
potentials indicate network state and account for neuronal response
variability. Journal of Computational Neuroscience, 29(3), 567–
579. doi:10.1007/s10827-009-0208-9.

Kohn, A., & Movshon, J. A. (2003). Neuronal adaptation to visual mo-
tion in area MT of the macaque. Neuron, 39(4), 681–691. doi:10.
1016/S0896-6273(03)00438-0.

Kottas, A., Behseta, S., Moorman, D. E., Poynor, V., & Olson, C. R.
(2012). Bayesian nonparametric analysis of neuronal intensity rates.
Journal of Neuroscience Methods, 203(1), 241–53. doi:10.1016/j.
jneumeth.2011.09.017.

Koyama, S. (2015). On the spike train variability characterized by
variance-to-mean power relationship. Neural Computation, 27(7),
1530–48. doi:10.1162/NECO_a_00748.

Lansky, P., & Vaillant, J. (2000). Stochastic model of the overdispersion
in place cell discharge. Biosystems, 58(1), 27–32.

Lee, D., Port, N. L., Kruse, W., & Georgopoulos, A. P. (1998). Variability
and correlated noise in the discharge of neurons in motor and parietal
areas of the primate cortex. Journal of Neuroscience, 18(3), 1161–
1170. http://www.jneurosci.org/content/18/3/1161.abstract?ijkey=
bd8ccb3d3a84873b46d8a3414a579c19586b02c6&keytype2=tf_
ipsecsha. Accessed 11 November 2015.

Maimon, G., &Assad, J. a. (2009). Beyond Poisson: increased spike-time
regularity across primate parietal cortex. Neuron, 62(3), 426–440.
doi:10.1016/j.neuron.2009.03.021.

Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in
neocortical neurons. Science, 268(5216), 1503–1506.

Mandelblat-Cerf, Y., Paz, R., &Vaadia, E. (2009). Trial-to-trial variability
of single cells in motor cortices is dynamically modified during
visuomotor adaptation. The Journal of Neuroscience : The Official
Journal of the Society for Neuroscience, 29(48), 15053–62. doi:10.
1523/JNEUROSCI.3011-09.2009.

Masquelier, T. (2013). Neural variability, or lack thereof. Frontiers in
Computational Neuroscience, 7(February), 7. doi:10.3389/fncom.
2013.00007.

Minka, T. T. P., Shmueli, G., Kadane, J. B. J., Borle, S., & Boatwright, P.
(2003). Computing with the COM-Poisson distribution., PA:
Department of, (776). http://lib.stat.cmu.edu/cmu-stats/tr/tr776/
tr776.pdf

Moshitch, D., & Nelken, I. (2014). Using Tweedie distributions for fitting
spike count data. Journal of Neuroscience Methods, 225, 13–28.
doi:10.1016/j.jneumeth.2014.01.004.

Nawrot, M. P. (2010). Analysis and interpretation of interval and count
variability in neural spike trains. In Analysis of parallel spike trains
(pp. 37–58). Springer.

Paninski, L., Ahmadian, Y., Ferreira, D. G., Koyama, S., Rahnama Rad,
K., Vidne, M., et al. (2010). A new look at state-space models for
neural data. Journal of Computational Neuroscience, 29(1), 107–
126. doi:10.1007/s10827-009-0179-x.

Pillow, J.W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky,
E. J. (2005). Prediction and decoding of retinal ganglion cell re-
sponses with a probabilistic spiking model. Journal of
Neuroscience, 25(47), 11003–11013.

Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky,
E. J., & Simoncelli, E. P. (2008). Spatio-temporal correlations and
visual signalling in a complete neuronal population. Nature,
454(7207), 995–999.

Reich, D. S., Victor, J. D., Knight, B. W., Ozaki, T., & Kaplan, E. (1997).
Response variability and timing precision of neuronal spike trains in
vivo. Journal of Neurophysiology, 77(5), 2836–41. http://jn.

physiology.org/content/77/5/2836.abstract. Accessed 12 November
2015.

Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics,
9(1), 130–134. http://projecteuclid.org/euclid.aos/1176345338.
Accessed 30 October 2015.

Sanger, T. D. (1996). Probability density estimation for the interpretation
of neural population codes. Journal of Neurophysiology, 76(4),
2790–2793.

Scaglione, A., Moxon, K. A., Aguilar, J., & Foffani, G. (2011).
Trial-to-trial variability in the responses of neurons carries
information about stimulus location in the rat whisker thala-
mus. Proceedings of the National Academy of Sciences of the
United States of America, 108(36), 14956–61. doi:10.1073/
pnas.1103168108.

Schölvinck, M. L., Saleem, A. B., Benucci, A., Harris, K. D., &
Carandini, M. (2015). Cortical state determines global variability
and correlations in visual cortex. The Journal of Neuroscience :
The Official Journal of the Society for Neuroscience, 35(1), 170–8.
doi:10.1523/JNEUROSCI.4994-13.2015.

Scott, J., & Pillow, J. W. (2012). Fully Bayesian inference for neural
models with negative-binomial spiking. In Advances in Neural
Information Processing Systems (pp. 1898–1906). http://papers.
nips.cc/paper/4567-fully-bayesian-inference-for-neural-models-
with-negative-binomial-spiking. Accessed 27 July 2015.

Sellers, K. F., & Shmueli, G. (2009). A regression model for count data
with observation-level dispersion. In 24th International Workshop
on Statistical Modelling (IWSM).

Sellers, K. F., & Shmueli, G. (2010). A flexible regression model for
count data. The Annals of Applied Statistics, 943–961.

Sellers, K. F., & Shmueli, G. (2013). Data dispersion: Now you see it…
now you don’t. Communications in Statistics-Theory and Methods,
42(17), 3134–3147.

Sellers, K. F., Borle, S., & Shmueli, G. (2012). The COM-Poisson model
for count data: a survey of methods and applications. Applied
Stochastic Models in Business and Industry, 28(2), 104–116.

Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of
cortical neurons: implications for connectivity, computation, and
information coding. Journal of Neuroscience, 18(10), 3870–3896.

Shidara, M., Mizuhiki, T., & Richmond, B. J. (2005). Neuronal firing in
anterior cingulate neurons changes modes across trials in single
states of multitrial reward schedules. Experimental Brain
Research, 163(2), 242–5. doi:10.1007/s00221-005-2232-y.

Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S.,
Shima, K., et al. (2009). Relating neuronal firing patterns to func-
tional differentiation of cerebral cortex. PLoS Computational
Biology, 5(7), e1000433. doi:10.1371/journal.pcbi.1000433.

Shmueli, G., Minka, T., Kadane, J., Borle, S., & Boatwright, P. (2004). A
useful distribution for fitting discrete data:revival of the conway-
Maxwell_Poisson distribution. Applied Statistic, 54(1), 127–142.

Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical
cells is inconsistent with temporal integration of randomEPSPs. The
Journal of Neuroscience : The Official Journal of the Society for
Neuroscience, 13(1), 334–350.

Stan: A C++ Library for probability and sampling, version 2.8.0. (2015).
Retrieved from http://mc-stan.org/

Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability:
noise or part of the signal? Nature Reviews. Neuroscience, 6(5),
389–397. doi:10.1038/nrn1668.

Stevenson, I. H., Rebesco, J. M., Miller, L. E., & Körding, K. P. (2008).
Inferring functional connections between neurons. Current Opinion
in Neurobiology, 18(6), 582–588.

Stevenson, I. H., Cherian, A., London, B. M., Sachs, N. A., Lindberg, E.,
Reimer, J., et al. (2011). Statistical assessment of the stability of
neural movement representations. Journal of Neurophysiology,
106(2), 764–774. doi:10.1152/jn.00626.2010.

J Comput Neurosci

http://dx.doi.org/10.1007/s10827-009-0208-9
http://dx.doi.org/10.1016/S0896-6273(03)00438-0
http://dx.doi.org/10.1016/S0896-6273(03)00438-0
http://dx.doi.org/10.1016/j.jneumeth.2011.09.017
http://dx.doi.org/10.1016/j.jneumeth.2011.09.017
http://dx.doi.org/10.1162/NECO_a_00748
http://www.jneurosci.org/content/18/3/1161.abstract?ijkey=bd8ccb3d3a84873b46d8a3414a579c19586b02c6&keytype2=tf_ipsecsha
http://www.jneurosci.org/content/18/3/1161.abstract?ijkey=bd8ccb3d3a84873b46d8a3414a579c19586b02c6&keytype2=tf_ipsecsha
http://www.jneurosci.org/content/18/3/1161.abstract?ijkey=bd8ccb3d3a84873b46d8a3414a579c19586b02c6&keytype2=tf_ipsecsha
http://dx.doi.org/10.1016/j.neuron.2009.03.021
http://dx.doi.org/10.1523/JNEUROSCI.3011-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.3011-09.2009
http://dx.doi.org/10.3389/fncom.2013.00007
http://dx.doi.org/10.3389/fncom.2013.00007
http://lib.stat.cmu.edu/cmu-stats/tr/tr776/tr776.pdf
http://lib.stat.cmu.edu/cmu-stats/tr/tr776/tr776.pdf
http://dx.doi.org/10.1016/j.jneumeth.2014.01.004
http://dx.doi.org/10.1007/s10827-009-0179-x
http://jn.physiology.org/content/77/5/2836.abstract
http://jn.physiology.org/content/77/5/2836.abstract
http://projecteuclid.org/euclid.aos/1176345338
http://dx.doi.org/10.1073/pnas.1103168108
http://dx.doi.org/10.1073/pnas.1103168108
http://dx.doi.org/10.1523/JNEUROSCI.4994-13.2015
http://papers.nips.cc/paper/4567-fully-bayesian-inference-for-neural-models-with-negative-binomial-spiking
http://papers.nips.cc/paper/4567-fully-bayesian-inference-for-neural-models-with-negative-binomial-spiking
http://papers.nips.cc/paper/4567-fully-bayesian-inference-for-neural-models-with-negative-binomial-spiking
http://dx.doi.org/10.1007/s00221-005-2232-y
http://dx.doi.org/10.1371/journal.pcbi.1000433
http://mc-stan.org/
http://dx.doi.org/10.1038/nrn1668
http://dx.doi.org/10.1152/jn.00626.2010


Taouali, W., Benvenuti, G., Wallisch, P., Chavane, F., & Perrinet, L. U.
(2016). Testing the odds of inherent vs. observed overdispersion in
neural spike counts. Journal of Neurophysiology, 115(1), 434–44.
doi:10.1152/jn.00194.2015.

Teich, M. C. (1989). Fractal character of the auditory neural spike train.
IEEE Transactions on Bio-Medical Engineering, 36(1), 150–60.
doi:10.1109/10.16460.

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E.
N. (2005). A point process framework for relating neural spiking
activity to spiking history, neural ensemble, and extrinsic covariate
effects. Journal of Neurophysiology, 93(2), 1074–1089.

Uzzell, V. J., & Chichilnisky, E. J. (2004). Precision of spike trains in
primate retinal ganglion cells. Journal of Neurophysiology, 92(2),
780–789. doi:10.1152/jn.01171.2003.

van Steveninck, R. R. R., Lewen, G. D., Strong, S. P., Koberle, R., &
Bialek, W. (1997). Reproducibility and variability in neural spike
trains. Science, 275(5307), 1805–1808.

Vogel, A., Hennig, R. M., & Ronacher, B. (2005). Increase of neuronal
response variability at higher processing levels as revealed by

simultaneous recordings. Journal of Neurophysiology, 93(6),
3548–59. doi:10.1152/jn.01288.2004.

Werner, G., &Mountcastle, V. B. (1963). The variability of central neural
activity in a sensory system, and its implications for the central
reflection of sensory events. Journal of Neurophysiology, 26(6),
958–977.

Wiener, M. C., & Richmond, B. J. (2003). Decoding spike trains instant
by instant using order statistics and the mixture-of-poissons model.
Journal of Neuroscience, 23(6), 2394–2406. http://www.jneurosci.
org/content/23/6/2394.full. Accessed 14 December 2015.

Zador, A. (1998). Impact of synaptic unreliability on the information
transmitted by spiking neurons. Journal of Neurophysiology,
79(3), 1219–1229.

Zhao, M., & Iyengar, S. (2010). Nonconvergence in logistic and
poisson models for neural spiking. Neural Computation,
22(5), 1231–1244.

Zhu, L., Morris, D. S., Sellers, K. F., & Shmueli, G. (2015).
Bridging the gap: a generalized stochastic process for count
data. Under Review.

J Comput Neurosci

http://dx.doi.org/10.1152/jn.00194.2015
http://dx.doi.org/10.1109/10.16460
http://dx.doi.org/10.1152/jn.01171.2003
http://dx.doi.org/10.1152/jn.01288.2004
http://www.jneurosci.org/content/23/6/2394.full
http://www.jneurosci.org/content/23/6/2394.full

	Flexible models for spike count data with both over- and under- dispersion
	Abstract
	Introduction
	Methods
	Conway-Maxwell-Poisson models
	Generalized linear models with COM-Poisson observations
	Maximum likelihood, MAP estimation, and Bayesian inference
	Model comparison
	Simulating the relationship between variable input current and spike count variability
	Experimental Fano factors
	Tuning curve data
	PSTH data

	Results
	COM-Poisson models of tuning curves
	Dispersion affects standard errors
	COM-Poisson models of PSTHs

	Discussion
	References


