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Generalized linear models (GLMs) have a wide range of applications in
systems neuroscience describing the encoding of stimulus and behav-
ioral variables, as well as the dynamics of single neurons. However, in
any given experiment, many variables that have an impact on neural ac-
tivity are not observed or not modeled. Here we demonstrate, in both
theory and practice, how these omitted variables can result in biased pa-
rameter estimates for the effects that are included. In three case stud-
ies, we estimate tuning functions for common experiments in motor cor-
tex, hippocampus, and visual cortex. We find that including traditionally
omitted variables changes estimates of the original parameters and that
modulation originally attributed to one variable is reduced after new
variables are included. In GLMs describing single-neuron dynamics, we
then demonstrate how postspike history effects can also be biased by
omitted variables. Here we find that omitted variable bias can lead to
mistaken conclusions about the stability of single-neuron firing. Omitted
variable bias can appear in any model with confounders—where omitted
variables modulate neural activity and the effects of the omitted variables
covary with the included effects. Understanding how and to what extent
omitted variable bias affects parameter estimates is likely to be important
for interpreting the parameters and predictions of many neural encoding
models.

1 Introduction

Regression models have been widely used in systems neuroscience to ex-
plain how external stimulus and task variables, as well as internal state
variables, may relate to observed neural activity (Brown, Barbieri, Eden,
& Frank, 2003; Kass, Ventura, & Brown, 2005). However, in many cases,
the full set of variables that explain the activity of the observed neurons
is not observed or is not even known. It is important to recognize that in
these cases, omitted variables can cause the parameter estimates for the ef-
fects that are included in a regression model to be biased. That is, parame-
ter estimates for the modeled effects would be different if other, omitted
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variables were to be included in the model (Box, 1966). In experiments
from behaving animals (Niell & Stryker, 2010; Reimer et al., 2014), but also
in more controlled sensory tasks (Arandia-Romero, Tanabe, Drugowitsch,
Kohn, & Moreno-Bote, 2016; Kelly, Smith, Kass, & Lee, 2010), there is grow-
ing evidence that neural activity is affected by many more variables than are
typically considered relevant (Kandler, Mao, McNaughton, & Bonin, 2017;
Stringer et al., 2018). At the same time, although it has long been a con-
cern in statistics (Pearl, 2009) and has received some attention in other fields
(Clarke, 2005; Greenland, 1989), omitted variable bias, as a general problem,
appears underappreciated in systems neuroscience. Here we demonstrate
why systematically considering omitted variable bias may be important in
neural data analysis and examine how omitted variable bias can affect one
popular framework for describing neural spiking activity: the generalized
linear model (GLM) with Poisson observations.

In general, regression methods aim to estimate variations in a response
variable as a function of other variables or covariates. When the goal of
modeling is to maximize prediction accuracy, such as with brain-machine
interfaces, interpreting the model parameters may not be a high priority.
However, in many other cases, parameter estimates are, at least to some
extent, interpreted and analyzed. For instance, tuning curves or receptive
fields may be measured and compared under different stimulus or task con-
ditions or before and after a manipulation. In fully controlled experiments,
where the covariates are assigned at random, estimated coefficients can of-
ten be interpreted as estimates of causal effects (Gelman & Hill, 2007). How-
ever, for many cases in neuroscience, it may be difficult or impossible to
completely control or randomize all the relevant variables.

In modeling neural activity, omitted variable bias can appear in any sit-
uation where neurons are modulated by omitted variables and the omitted
variables (often called confounders) are not independent from the variables
included in the model—the ones whose effects we are trying to estimate.
Minimizing the influence of confounding variables is a major part of most
experimental design (Rust & Movshon, 2005), and the statistical effects of
confounding variables are well understood (Wasserman, 2004). However,
when the goal of modeling is description or explanation (Shmueli, 2010),
the effects of these omitted variables are frequently neglected. To give a con-
crete example, imagine an idealized neuron in primary motor cortex (M1)
whose firing, unlike typical M1 neurons (Georgopoulos, Kalaska, Caminiti,
& Massey, 1982), is not at all modulated by reach direction but instead is
modulated by reach speed (see Figure 1). In a typical experimental setting,
an animal’s reach directions are randomized, but reach speed cannot be
randomized or tightly controlled. If the average speed differs across reach
directions, such a hypothetical neuron will appear to be tuned to reach di-
rection, despite not being directly affected by direction. First, fitting a typi-
cal tuning curve for reach direction, we would infer that such a neuron has
a clear preferred direction and nonzero modulation depth. If we then fit a
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Figure 1: When relevant variables are omitted from the model, estimates of the
included effects can be biased. Consider two hypothetical neurons tuned to an
observed variable x and an omitted variable xh. Neuron 1 is not tuned to the
observed variable x, but its rate is modulated by the omitted variable with true
tuning curves denoted by the gray curves (top left). If x and xh covary, the appar-
ent tuning of this neuron to x when the tuning curve is estimated using x alone
will then be biased (red and blue curves, top middle). This neuron will appear
to be tuned to x despite not actually being tuned to this variable. In addition, to
this type of illusory tuning, there can also be more subtle biases. Here, neuron
2 is tuned to x and xh (gray curves, bottom left). However, depending on how
x and xh covary, the preferred stimulus or the modulation can be misestimated.
Here the true tuning to x is shown at three different fixed values of xh (three
gray curves, left panels). The estimated tuning when xh is omitted is shown at
the center with red and blue curves corresponding to the estimates under two
different joint distributions (matching borders, right). The dashed line denotes
the effect of x when xh is fixed.

second model that included both reach direction and speed, we would in-
fer that the neuron is modulated by speed alone, and it would be apparent
that the original preferred direction and modulation depth estimates were
biased due to the omitted variable.

In adding more variables, previous studies have largely focused on the
fact that including previously omitted variables improves model accuracy
or the fact that neural activity is often influenced by a host of task variables.
In M1, for instance, including speed improves model accuracy (Moran &
Schwartz, 1999), but the presence of many correlated motor variables (e.g.,
kinematics, end-point forces, muscle activity) makes it difficult to interpret
how neurons represent movement overall (Humphrey, Schmidt, & Thomp-
son, 1970; Omrani, Kaufman, Hatsopoulos, & Cheney, 2017). In this letter,
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instead of focusing on the advantages or complexities of models with many
variables, we focus on the well-known, but underdiscussed, fact that the
parameters describing the original effects change as additional variables
are included. The hypothetical M1 neuron above points to a more general
question about regression models of neural activity. What happens when
we cannot or do not include variables that are relevant to the process that
we are modeling?

Here we first evaluate the statistical problem of omitted variable bias in
the canonical generalized linear model with Poisson observations. Then,
as a case study, we examine how speed affects estimates of direction tun-
ing of neurons in primary motor cortex, as well as two other case stud-
ies where the spike counts are modeled as a function of external variables:
orientation tuning in primary visual cortex (V1) and place tuning in the
hippocampus (HC). In each of these case studies, we find that commonly
omitted variables (speed in M1, population activity in V1, and speed and
heading in HC) can bias the estimated effects of commonly included vari-
ables (reach direction in M1, stimulus orientation or direction in V1, and
place in HC). Across all three case studies, including the omitted variables
reduces the estimated modulation due to typical tuning effects. We also il-
lustrate how omitted variable bias can affect generalized linear models of
spike dynamics where a postspike history filter aims to describe refractori-
ness and bursting (Truccolo, Eden, Fellows, Donoghue, & Brown, 2005). The
goal of these models is typically to differentiate aspects of spike dynamics
that are due to the neurons’ own properties (e.g., membrane time constant,
resting potential, after-hyperpolarization currents) from those due to input
to the neuron from other sources (Brillinger & Segundo, 1979; Paninski,
2004). In this setting, the input to the neuron is typically not directly ob-
served but is approximated by stimulus or behavioral covariates, local field
potential, or the activity of other neurons. Here we show that omitting the
input can lead to large biases in postspike history filters and that including
omitted variables describing the input can change the interpretation and
stability of the estimated history effects.

GLMs have been used in many settings to disentangle the effects of mul-
tiple, possibly correlated, stimulus or task variables (Fernandes, Stevenson,
Phillips, Segraves, & Kording, 2014; Park, Meister, Huk, & Pillow, 2014;
Runyan, Piasini, Panzeri, & Harvey, 2017) and also to model neural mech-
anisms such as postspike dynamics, interactions between neurons, and
coupling to local fields (Harris, Csicsvari, Hirase, Dragoi, & Buzsáki, 2003;
Pillow et al., 2008; Truccolo et al., 2005). It is often argued that GLMs are
advantageous because they have unique maximum likelihood estimates
and can be more robust to nonspherical covariate distributions than other
methods, such as spike-triggered averaging (Paninski, 2004; Pillow, 2007).
Although these advantages are important, GLMs are not immune to bias.
Here we show how the possibility of omitted variable bias, in particular,
should encourage researchers to be cautious in their interpretation of model
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parameters, even in cases where a GLM achieves high predictive accuracy
(Shmueli, 2010).

2 Results

Here we introduce the problem of omitted variable bias and examine dif-
ferences between omitted variable bias in linear models and the canonical
Poisson GLM. We then consider three tuning curve estimation problems:
estimating direction tuning in primary motor cortex, place tuning in hip-
pocampus, and orientation tuning in primary visual cortex, and show how
omitted variables in each of these three cases can alter parameter estimates.
Finally, we consider a GLM that aims to describe the dynamics of postspike
history and show how omitted inputs can bias the estimated history effects
and qualitatively change model stability.

2.1 Omitted Variable Bias in Linear Regression and Canonical Poisson
GLMs. When relevant variables are not included in a regression model,
the estimated effects for the variables that are included can be biased (Box,
1966). Omitted variable biases can cause the parameters describing the ef-
fects of the original variables to be over- or underestimated, and model fits
can change qualitatively when omitted variables are included (see Figure 1).

To understand the problem of omitted variable bias, it will be helpful to
briefly review the well-known case of multiple linear regression, where the
bias can be described analytically (Box, 1966). In the linear setting, consider
the generative model,

y = Xβ + Xhβh + ε,

where observations y are a linear combination of observed X and omitted
Xh variables plus normally distributed independent and identically dis-
tributed (i.i.d.) noise ε ∼ N(0, σ ). For simplicity, we ignore the intercept
term, but in the analysis that follows, it may also be considered as part of
X. If we then fit the (misspecified) model without Xh using maximum like-
lihood estimation (equivalent to the ordinary least squares solution, in this
case), the estimated parameters will be

β̂ = (XTX )−1XTy

= β + (XTX )−1XTXhβh + ξ,

where ξ denotes the effect of the noise and the bias (XTX )−1XTXhβh will
generally be nonzero. There will be no bias only in the cases where the
omitted variables do not affect the observations (βh = 0) or when the omit-
ted variables and observed variables are not collinear (XTXh = 0). Note
that (XTX )−1XTXh is the matrix of regression coefficients for the omitted
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variables using the observed variables as predictors. For linear regression,
the omitted variable bias thus depends on both the extent to which the omit-
ted variables affect the observations βh and the extent to which the omitted
variables can be (linearly) predicted from the observed variables.

Although there is a closed-form solution for the omitted variable bias for
linear regression, the generalized linear setting is not as tractable (Clogg,
Petkova, & Shihadeh, 1992; Drake & McQuarrie, 1995; Gail, Wieand, & Pi-
antadosi, 1984). We will consider the case of a canonical Poisson GLM, in
particular, where

λ = exp(Xβ + Xhβh),

y ∼ Poisson(λ),

In the more general case, GLMs have

E[y] = g−1(Xβ + Xhβh),

where g−1(·) is the inverse link function and y is distributed following an
exponential family distribution (McCullagh & Nelder, 1989). For a canonical
GLM the log likelihood takes the form

L(β, βh) ∝
∑

i

yi(Xiβ + Xh,iβh) − G(Xiβ + Xh,iβh) + const(β, βh),

where the nonlinear function G(·) depends on both the link function and the
noise model. For canonical GLMs, this log likelihood is concave, and the
maximum likelihood estimate β̂ satisfies ∂L

∂β
|β̂ = 0. The exact form of G(·)

will depend on the model, but for linear regression, G(x) is proportional to
x2

2 , and for canonical (log-link) Poisson regression, G(·) = exp(·).
Now, with omitted variables, instead of maximizing the correct log like-

lihood, we maximize instead

Lo(β ) ∝
∑

i

yi(Xiβ ) − G(Xiβ ) + const(β ).

For the omitted variable bias in β̂ to be 0, we need both ∂L
∂β

|β̂ = 0 and ∂Lo
∂β

|β̂ =
0 at the same value of β. Although neither MLE has a closed-form solution,
this condition implies that if there is no bias due to the omitted variables,

XTG′(Xβ + Xhβh) = XTG′(Xβ ),

where G′(·) is the derivative of G(·). For linear regression, this equality re-
duces to the OLS form derived above, and for canonical Poisson regression
we have
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XT exp(Xβ + Xhβh) = XT exp (Xβ ).

This equality is satisfied when observations are not modulated by the omit-
ted variables βh = 0 or, more generally, when the effect of the omitted
variables δλ = exp(Xβ + Xhβh) − exp(Xβ ) is orthogonal to the included
variables X. Note that with linear regression, XTXh = 0 implies that the es-
timates will not be biased, but here this is not the case unless XTδλ = 0 as
well. Due to the structure of the canonical Poisson GLM, omitted variable
bias can thus occur even in a properly randomized, controlled experiment
(Gail et al., 1984).

It is important to note that the maximum likelihood estimates themselves
are consistent. That is, the estimators converge (in probability) to their true
values when the generative model is correct. The bias here is a result of the
model being misspecified. This misspecification affects the location of the
maximum and the shape of the likelihood. Optimization methods such as
Newton’s method typically contain omitted variable bias in each parameter
update. For canonical Poisson regression, for instance, the updates take the
form

β̂k+1 ← β̂k + (XTWX )−1XT (y − λ)

at iteration k, where the weight matrix W is diagonal with entries Wii = λi

and (XTWX )−1 is the Fisher scoring matrix (inverse Hessian of the log like-
lihood) at the current estimate β̂k. Since the misspecified model will use
λ = exp(Xβ ) instead of the exp(Xβ + Xhβh) both the weight matrix and
the gradient XT (y − λ) will be biased at each step of the optimization (ex-
cept when XTδλ|βk = 0). Traditional standard errors for the MLE will also
typically be influenced by omitted variables, since ŝei =

√
((XTWX )−1)ii.

Moreover, as previous studies have shown, omitted variables can lead to
misestimation of the variability in E[y] and dispersion var(y) (Czanner et al.,
2008; Goris, Movshon, & Simoncelli, 2014). If the omitted variables affect
the observations, they will generally increase the variability of E[y]. Then,
unless the omitted variables are perfectly predicted by the included vari-
ables, the explained variance var(E[y]) of the misspecified model will be
lower than that of the full model. This may in turn lead to overestimates of
dispersion, since var(y) = E[var(y)] + var(E[y]).

2.2 Omitted Variable Bias in Tuning Curve Estimation. When fitting
tuning curve models to spike count data, omitted variable bias can cause
preferred stimuli and modulation depths to be misestimated and can even
lead to completely illusory tuning (see Figure 1). To illustrate how omitted
variable bias affects GLMs of neural spiking, not just in theory but in prac-
tice, we consider three case studies where we fit typical tuning curve models
that omit potentially relevant variables along with augmented models that
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include these additional variables. We first consider modeling spike counts
across trials and on relatively slow (over 100 ms) timescales. Here we assess
(1) the tuning of neurons in motor cortex to reach direction, with speed as
a potential omitted variable; (2) the tuning of neurons in hippocampus to
position, with both speed and head direction as potential omitted variables;
and (3) the tuning of neurons in visual cortex to the direction of motion of a
sine-wave grating, with population activity as a potential omitted variable.
In each of these cases studies, we show how the omitted variables are not in-
dependent of the commonly included variables and how neural responses
are modulated by the omitted variables. Together, these two properties, can
lead to omitted variable biases.

In our first case study, we model data recorded from primary motor cor-
tex (M1) of a macaque monkey performing a center-out, planar reaching
task. In this task, speed differs systematically across reach directions (see
Figure 2A), with average speed differing by as much as 35 ± 3% (for the tar-
gets at 45 and 225 degrees relative to right; see Figure 2B). To model neural
responses, we first fit a traditional tuning curve model (Amirikian & Geor-
gopulos, 2000; Georgopoulos et al., 1982), where the predicted responses
depend only on target direction. Here we use a circular, cubic B-spline ba-
sis (five equally spaced knots) to allow for deviations from sinusoidal firing,
but in most cases, the responses of the n = 81 neurons in this experiment
are well described by cosine-like tuning curves with clear modulation for
reach direction. We then fit a second model that includes effects from move-
ment speed. Here we use covariates based on Moran and Schwartz (1999),
including a linear speed effect, as well as cosine-tuned direction-speed in-
teractions (see section 4). This model captures the responses of individual
neurons, where spike counts can increase (see Figure 2C, top) or decrease
(see Figure 2C, middle) as a function of speed, and, in some cases, speed and
direction appear to interact (see Figure 2C, bottom). Together, the fact that
direction and speed are not independent, along with the fact that neural re-
sponses appear to be modulated by speed, could lead to biased parameter
estimates for the model where speed is omitted.

Comparing the models with and without omitted variables, we find that,
averaged across the population, there are only minimal shifts in the pre-
ferred direction (3 ± 2 degrees) when speed is included in the traditional
tuning curve model, and there do not appear to be large, systematic shifts in
the population distribution of PDs (Kuiper’s test, p > 0.1). At the same time,
there is substantial variability between neurons in the size of the PD shift
(circular SD 32 ± 5 degrees. Across the population, modulation depth (mea-
sured using the standard deviation of the tuning curve) decreases slightly
on average (3 ± 2%), and the size of the modulation change also varies sub-
stantially between individual neurons (SD of changes 18 ± 3%). An exam-
ple neuron in Figure 1C (bottom), for instance, has a modulation decrease
of 9 ± 5%, and the preferred direction changes 4 ± 9 degrees when speed
is included in the model (standard error from bootstrapping). Overall,
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Figure 2: Speed as an omitted variable in M1 tuning for reach direction. (A) The
distribution of reach speeds differs by target direction in a center-out task. Cir-
cles denote median, and boxes denote interquartile range. (B) Speed profiles for
the two targets showing the largest speed differences. Individual traces denote
individual trials aligned to the half-max (black arrow). The inset shows the posi-
tion of each trial with colors denoting reach direction. (C) The responses of three
M1 neurons show typical tuning for reach direction. The tuning curve estimated
using direction covariates alone (black) changes when speed covariates are in-
cluded (red). Red curves denote the direction effect within the full model and
are generated by assuming speed is constant (equal to the mean speed across all
trials). Right panels illustrate the speed dependence for the preferred direction
and its opposite. Dark lines denote the estimated effect of speed under the full
model. Data points show single trial data, along with the mean speed and rate
for each direction (big data point). Light lines show linear trends (OLS) using
only the trials from each specific target.
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approximately 10% of neurons have statistically significant changes in PD,
and approximately 14% have significant changes in modulation (bootstrap
tests α = 0.05, not corrected for multiple comparisons). For some individ-
ual neurons, at least, the parameters of the model without speed thus have
clear omitted variable bias. However, since individual neurons have diverse
speed dependencies, in this case, the average biases across the population
are minimal.

When speed is included in the model, model accuracy (pseudo-R2) does
increase slightly (p = 0.01, one-sided paired t-test across neurons). The av-
erage cross-validated (jackknife) pseudo-R2 for the original model is 0.23 ±
0.01 and for the model with speed, 0.24 ± .01 (see Figure 5). However,
it seems likely that in other experimental contexts, the effects of omitting
speed could be more pronounced. By requiring the animal to make reaches
to the same targets at different speeds, previous studies have more clearly
demonstrated that responses in M1 are modulated by speed (Churchland,
Santhanam, & Shenoy, 2006). Here we demonstrate how this type of mod-
ulation can lead to omitted variable biases in the estimated parameters of
typical tuning curve models without speed.

In our second case study, we examine the activity of neurons in the dorsal
hippocampus of a rat foraging in an open field. Here we consider to what
extent the practice of omitting speed and head direction from a place field
model biases estimates of a neuron’s position tuning. As in the first case
study, omitted variable bias can occur if neural activity is modulated by
omitted variables and the omitted variables covary with the included vari-
ables. In the case of the hippocampus, neural activity is known to be mod-
ulated by both movement speed and head direction (McNaughton, Barnes,
& O’Keefe, 1983), in addition to an animal’s position (O’Keefe & Dostro-
vsky, 1971). Additionally, behavioral variables can be highly nonuniform
across the open field (Walsh & Cummins, 1976)—for instance, near and far
from the walls. Together the fact that the omitted variables may covary with
position and the fact that neurons appear to be modulated by the omitted
variables suggest that there may be omitted variable bias.

Here, in one recording during an open field foraging task, we find that
the average speed (see Figure 2A) and heading (see Figure 2B) differ exten-
sively as a function of position. Within a given neuron’s place field, the dis-
tributions of speed and heading may be very different from their marginal
distributions. Across the population of n = 68 place cells (selected from 117
simultaneously recorded neurons; see section 4), average in-field speed was
between 80% and 135% of the average overall speed (5.5 cm/s), and the an-
imal’s heading can be either more or less variable in-field (circular SD 57-80
deg) compared to overall (75 degrees).

As previous studies have shown, we also find that neural responses are
modulated by speed and head direction. Responses due to place, speed,
and heading are shown for one example neuron in Figure 3. This neu-
ron shows a stereotypical place-dependent response (see Figure 3B), but
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Figure 3: Speed and heading as omitted variables in hippocampal place cells.
(A) Average speed and heading as a function of position for a rat foraging in an
open field. (B) An example place cell tends to spike (red dots) when the animal
is at a specific position in space. (C) The activity of this neuron is modulated
by the animal’s speed (top row) and heading (bottom row). Speed is split into
quartiles, and subplots include all headings. The heading is split into quadrants,
and subplots include all speeds. (D) The distributions of speed and heading
within the place field differ from the overall distributions, and the neuron is
tuned to these variables. The blue curve shows model fit. (E) After modeling
the effect of speed and heading within the place field, the location of the place
field does not change, but the apparent modulation due to position is reduced.

splitting the observations by speed (see Figure 3C, top) or heading (see Fig-
ure 3C, bottom) by quartiles/quadrants reveals that there is also tuning to
these variables. The neuron appears to increase its firing with increasing
speed and responds most strongly when the rat is facing the left. These de-
pendencies are well fit by the full model where the firing rate depends not
just on position, but also on the (log-transformed) speed and the heading
(see Figure 3D, bottom). For the example place cell shown here, the location
of the place field does not change substantially when the omitted variables
are included (see Figure 3E). However, the modulation (SD of the rate map)
decreases by 27%. That is, 27% of the apparent modulation due to position
when it is modeled alone can be explained by speed and heading effects.

Across the population of place cells, there were no clear, systematic dif-
ferences in the place field locations, but the modulation (SD of the rate
map λ(x)) decreases by 9 ± 1% on average when speed and heading are
included. Individual neurons showed substantial variability in their modu-
lation differences (population SD 10 ± 1%). As in M1, including the omitted
variables increased spike prediction accuracy: the average cross-validated
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(10-fold) pseudo-R2 was .29 ± .02 for the original model and .31 ± .02 for the
model, including speed and heading activity. This difference seems small
since there is large variability in pseudo-R2 values across the population,
but the average increase in pseudo-R2 was 11 ± 3% (see Figure 5). Given
that neurons appear to be modulated by speed and heading, it is unsurpris-
ing that including these variables improves model fit. However, as before,
it is important to note that this modulation can lead to biases in the place
field estimates for the model with only position.

In our third case study, we examine the activity of neurons in a more
controlled sensory experiment. Here we use data recorded from primary
visual cortex (V1) of an anaesthetized monkey viewing oriented sine-wave
gratings moving in 1 of 12 different directions (see section 4). In this exper-
iment, variability in the animal’s behavior is purposefully minimized, and
instead of considering the effect of omitting a behavioral variable, we con-
sider the effect of omitting a variable relating to the animal’s internal state:
the total population activity. Several studies have shown that population
activity alters neural responses in V1 (Arandia-Romero et al., 2016; Arieli,
Sterkin, Grinvald, & Aertsen, 1996; Kelly et al., 2010; Okun et al., 2015). If
the distribution of population activity also varies with stimulus direction,
there is the potential for omitted variable bias.

Here we assess neural activity from n = 90 simultaneously recorded neu-
rons across many (2400) repeated trials with 12 different movement di-
rections. We find high trial-to-trial variability in the population rate (see
Figure 4A), and the average firing across all neurons differs across stimulus
directions—up to about 50%. For this recording, the most extreme differ-
ences were between the 180 degree stimulus, where the average rate across
the population was 3.4 ± 0.1 Hz, and the 60 degree stimulus, where the av-
erage rate was 6.3 ± 0.1 Hz (see Figure 4B). By adding the (log-transformed)
population rate as a covariate to a more typical model of direction tuning,
we find that population activity may lead to omitted variable bias in models
of direction tuning alone.

As in the case studies above, there do not appear to be any consistent or
systematic effects on the preferred stimulus direction at the population level
(Kuiper’s test, p = 0.1). However, the modulation depth (measured using
SD of the tuning curve) decreases substantially 15 ± 2% when population
rate is included in the model, and there is again high variability across neu-
rons (SD 20 ± 2%). In this case, model accuracy increases substantially when
the omitted variable is included. The cross-validated (10-fold) pseudo-R2 is
.26 ± .02 for the original model and .43 ± .02 for the model including pop-
ulation activity, with an average increase of 164 ± 31% (see Figure 5).

Unlike in M1, where the effect of speed was highly diverse for different
neurons, in this case study, the effect of the population rate is largely con-
sistent. Higher population rates are associated with higher firing rates, and
for most neurons, the effect of the population rate is stronger in the pre-
ferred direction(s), consistent with a multiplicative effect. Note that, we do
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Figure 4: Population rate as an omitted variable in primary visual cortex.
(A) Correlated trial-to-trial variability. Population rasters for three trials of the
same drifting grating stimulus (0 degree, red; 30 degrees, orange). Neurons are
sorted by overall firing rate. (B) Histograms of the population rate across trials.
As a population, the neurons respond at higher rates to 30 degree stimuli, but
there is high trial-to-trial variability. (C) The responses of 2 V1 neurons show
typical tuning for direction of motion. The tuning curve estimated using direc-
tion covariates alone (black) changes when the population rate covariates are
included (red). Right panels illustrate the dependence for the preferred direc-
tion and an orthogonal direction. Dark lines denote the estimated effect of speed
under the full model. Data points show single trial data, along with the mean
count and rate (big data point). Light lines show linear trends (OLS) using only
the trials from each specific stimulus.

not include the neuron whose rate we are modeling in the calculation of the
population rate. However, using the population rate as an omitted variable
requires some interpretation. The population rate will certainly be affected
by the tuning of the relatively small sample of neurons that we observe.
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Figure 5: For each of the case studies, on average, the model accuracy increases
when omitted variables are included (top) and the modulation due to the origi-
nal variables decreases (bottom). Scatter plots indicate cross-validated pseudo-
R2 values for each neuron under the two models. Modulation denotes the
standard deviation of the tuning to the original variable(s) under each model.
Here, modulation values are normalized by the average rate of each neuron.
Black lines denote equality. Red dashed lines denote linear fit with 0 intercept.

If we have a disproportionate number of neurons tuned to a specific pre-
ferred direction, the population rate in those directions will be higher. This
suggests that in a different recording, the covariation between the stimulus
and the population rate could very likely be different. However, it appears
that the omitted variable biases in this case are mostly driven by noise cor-
relations, where neural activity is correlated on single trials even within
the same stimulus condition, rather than stimulus correlations, where neu-
ral activity is correlated due to similar tuning. When we shuffle the data
within each stimulus condition (removing noise correlations) the average
change in the modulation depth is −1 ± 2% (SD 18 ± 3%), and the effect of
the omitted variable becomes negligible.

2.3 Omitted Variable Bias in the Estimation of Postspike History Ef-
fects. In addition to modeling spike counts over trials or on relatively
slow (more than 100 ms) behavioral timescales, GLMs are also often used
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to describe detailed, single-trial spike dynamics on fast (less than 10 ms)
timescales. One common covariate used in these types of models is a post-
spike history effect where the probably of spiking at a given time depends
on the recent history of spiking. Modeling these effects allows us to describe
refractoriness, bursting (Paninski, 2004; Truccolo et al., 2005), and a whole
host of other dynamics (Weber & Pillow, 2017). Conceptually, the goal of
these models is to disentangle the sources of rate variation based only on
observations of a neuron’s spiking, with history effects ideally reflecting
intrinsic biophysics However, since the full synaptic input is typically not
known with extracellular spike recordings, there is potential for omitted
variable biases.

To illustrate the potential pitfalls of omitting the input to a neuron, con-
sider using the GLM to capture single-neuron dynamics in the complete
absence of external covariates

λ(t) = exp(μ + αh(t)),

where the rate λ is determined by a baseline parameter μ along with a fil-
tered version of the neuron’s past spiking with hi(t) = ∑

τ>0 fi(τ )n(t − τ ).
This is a perfectly acceptable model of intrinsic dynamics, but for most spike
data that we observe, this isolated neuron model may not provide a realis-
tic description of a neuron receiving thousands of time-varying synaptic
inputs. If we fit this model to data where the input to the neuron did vary
over time,

λ(t) = exp(μ + αh(t) + βhxh(t)),

then the history filter in the first model will attempt to capture variation in
spiking due to the time-varying input, in addition to any intrinsic dynam-
ics. For example, when xh is periodic, the estimated history filters of the
original model will attempt to capture this periodic structure (see Figures
6A and 6B). Just as in the tuning curve examples above, the fact that history
effects covary with the input and the fact that the input modulates the neu-
ron’s firing leads to omitted variable bias. When the input is omitted from
the model, the biased history effects simply provide the best (maximum
likelihood) explanation of the observed spiking (see Figure 6C).

These examples with strong, periodic input are not necessarily biolog-
ically realistic, but they make it apparent how the postspike history can
be biased by omitted input variables. In vivo, neurons instead appear to
be in a high-conductance state, where membrane potential fluctuations
have approximately 1/ f power spectra (Destexhe, Rudolph, Fellous, & Se-
jnowski, 2001; Destexhe, Rudolph, & Paré, 2003). When these naturalistic
input statistics are used to drive the GLM, omitted variable bias can occur as
well. Here we simulate a GLM receiving 1/ f α noise input with α = 0 (white
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Figure 6: Estimated postspike history filters can be heavily biased when the in-
put is not included in the model. (A) We simulate from an inhomogeneous Pois-
son model with sinusoidal input (no postspike history effects). The input and
spike responses from 20 trials are shown. Although there are no history effects
in the generative model, a GLM with history effects that is missing the correct
input covariate will use the history terms to capture the structure in the auto-
correlation (C). Traces denote the estimated rate for the 20 trials shown above.
When the history term is included in the model, but the input is not, the GLM
can still reconstruct peristimulus time histogram responses using the postspike
history alone. (B) Postspike filters for the models in panel Awith 95% confidence
bands. Note that when input is included in the model, the filters correctly recon-
struct the true (lack of) filter and there is higher uncertainty around the regions
where the ISI distribution does not constrain the model.

noise) 1 and 2 (see Figure 7). For white noise input, the MLE accurately
recovers the simulated postspike history filter when the input is omitted
from the model, but when α = 1 or 2 the estimates become increasingly bi-
ased (see Figures 7A and 7C). With the full model, where the input is in-
cluded as a covariate, the history is recovered accurately no matter what
the input statistics are. Just as in the periodic case, however, these differ-
ent input statistics alter the autocorrelation, and when the input is omitted
from the model, the maximum likelihood history filter simply aims to cap-
ture these patterns.

In GLMs for single-neuron dynamics, one effect of omitted variable bias
is that it may lead us to misinterpret how stable a neuron’s dynamics are.
Even if the true history filter only reduces the neuron’s firing rate following
a spike (as in Figure 7C), the estimated filter can be biased upward when
the input is omitted. If we were to simulate the activity of this neuron based
on the biased filter, the bias could cause the neuron’s rate to diverge if the
rate becomes high enough. To assess the stability of the estimated postspike
history effects quantitatively, here we make use of a quasi-renewal approxi-
mation analysis introduced in Gerhard, Deger, and Truccolo (2017). Given a
history filter, this approach finds an approximate transfer function describ-
ing the neuron’s future firing rate (output) given its recent (input) firing
rate (see section 4). For all estimated models, the transfer function has a
stable fixed point near the neuron’s baseline firing rate. When the true in-
put is omitted and α > 0, the estimated history filters also have an unstable
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Figure 7: Postspike filters can show omitted variable bias even in a more realis-
tic scenario. Here we simulate from a GLM with a refractory postspike filter and
drive the neurons with 1/ f α noise. Excepting the case of white noise (α = 0), the
postspike filters estimated for the GLM without input are heavily biased (A). (C)
Even when the effect of the true postspike filter is to strictly decrease the firing
rate, the estimated filters can increase the firing rate. (B, D) Approximate trans-
fer functions from a quasi-renewal approximation. When the true filter is stable,
the estimated filters can result in fragile dynamics.

fixed point where the neuron’s firing rate will diverge if the rate exceeds this
point (Gerhard et al., 2017). Here we find that omitted variable bias leads
to apparent fragility (see Figures 7B and 7D). The stable region shrinks as α

increases, and even when the true dynamics are strictly stable (as in Figures
7C and 7D), omitted variable bias can lead us to mistakenly conclude that
the neuron has fragile dynamics.

With most extracellular spike recordings, the synaptic input that the
neuron receives is unknown. However, there may also be omitted variable
bias when history effects are estimated from real data. In this case, the in-
put to a neuron can be approximated by stimulus or behavioral variables,
local field potentials, or the activity of simultaneously recorded neurons
(Gerhard et al., 2013; Harris et al., 2003; Kelly et al., 2010; Pillow et al.,
2008; Truccolo et al., 2005; Truccolo, Hochberg, & Donoghue, 2010; Vol-
gushev, Ilin, & Stevenson, 2015). Just as in the simulations above, includ-
ing or omitting these variables can alter the estimated history effects, even
though they are not as directly related to spiking as the synaptic input itself.
Here we consider total population spiking activity as a proxy for synaptic
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Figure 8: Postspike filters estimated from real data decrease when population
activity is included as a covariate. Segments of spontaneous activity are shown
for V1 (A) and during sleep for hippocampus (D). Neurons are sorted by fir-
ing rate. (B, E) Estimated postspike filters. Black lines denote the average filter
(thick) and standard deviation (thin). For clarity, only filters for neurons with
firing rates more than 1 Hz are shown. (C, F) Average quasi-renewal transfer
functions for the same set of neurons. All neurons appear to have fragile dy-
namics with one stable fixed point near the neuron’s average firing rate and an
unstable fixed point, beyond which the neuron’s firing rate diverges. Including
population covariates increases the region of stability.

input and consider how including population activity alters the history fil-
ters when compared to a model of history alone.

We examine two data sets: spontaneous activity from primary visual cor-
tex of an anaesthetized monkey with n = 62 simultaneously recorded neu-
rons and activity from dorsal hippocampus of a sleeping rat with n = 39
simultaneously recorded neurons. To model population covariates, we sum
the spiking of all neurons, except the one whose spiking we aim to pre-
dict, and low-pass filter the signal (see section 4). Similar to previous results
(Okun et al., 2015), we find that, since neurons often have correlated fluc-
tuations in their spiking (see Figures 8A and 8D), the population rate is a
good predictor for single-neuron activity. Moreover, when we add popu-
lation covariates to a GLM with postspike history effects, the history filter
changes.

In the V1 data set, the postspike gain decreases by 7.8 ± 0.5% on average
when population covariates are included and 14.9 ± 0.8% when consider-
ing only the first 50 ms after a spike (see Figure 8B). The effects of adding
population covariates are less pronounced in the hippocampal data set. The
postspike gain decreases by 2.5 ± 0.3% on average and 9.5 ± 1.2% when
considering only the first 50 ms after the spike (see Figure 8E). Based on the
quasi-renewal approximation, all neurons in both the V1 and hippocampal
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data sets have fragile transfer functions where there is a stable fixed point
(near the neuron’s average firing rate) and an unstable fixed point where
the neuron’s rate diverges if the input becomes too strong. For V1, the aver-
age upper limit of the stable region is 80 ± 3 Hz for the models with history
only and 143 ± 7 Hz for the models with population covariates (see Figure
8C). In the hippocampal data, the average upper limit of the stable region
is 38 ± 6 Hz for the models with history only and 75 ± 13 Hz for the models
with population covariates (see Figure 8F). Each neuron is thus apparently
more stable after the population covariates are included.

As in the case studies using tuning curves, adding covariates also im-
proves spike prediction accuracy. In the V1 data set, the average log-
likelihood ratio relative to a homogeneous Poisson model is 2.2 ± 0.3 bits/s
for the history model and 3.3 ± 0.3 bits/s for the model with population co-
variates. In hippocampus, the log-likelihood ratio is 0.9 ± 0.3 bits/s for the
history model and 2.0 ± 0.5 bits/s for the model with population covariates.
The larger effects in V1 are likely explained by the fact that the population
rate is predictive for many more neurons here than for the hippocampal
data. In the hippocampus, only 26% of the neurons have an increase of over
0.5 bits/s when the population covariates are included, compared to 85%
of neurons in V1. Altogether, these results demonstrate how omitted vari-
able bias could affect estimates of postspike history filters in vivo. In both
data sets, we find that when population covariates are included in the GLM,
spike prediction accuracy increases, postspike gain decreases, and apparent
stability increases.

3 Discussion

When the goal of modeling is causal inference or understanding of biolog-
ical mechanisms, the potential for biases due to omitted variables is often
clear. The statistical effects of confounders (Wasserman, 2004), as well as the
limits that they place on neuroscientific understanding, are widely appreci-
ated (Jonas & Kording, 2017; Krakauer, Ghazanfar, Gomez-Marin, MacIver,
& Poeppel, 2017; Yoshihara & Yoshihara, 2018). However, when the goal
of modeling is to create an abstract explanation or summary of observed
neural activity, the fact that omitted variables can bias these explanations
is not always widely acknowledged. Here we have illustrated the potential
for omitted variable bias in two types of commonly used GLMs for neural
spiking activity: tuning curve models using spike counts across trials and
models that capture single-neuron dynamics with a postspike history fil-
ter. In each model, adding a previously omitted variable improved spike
prediction accuracy, as expected. However, what we emphasize here is that
when omitted variables were included, the estimates of the original param-
eters changed. For three case studies using tuning curves, we found that by
adding a traditionally omitted variable, tuning curves showed less modu-
lation due to the originally included variables. In models of single-neuron
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dynamics, adding omitted variables led to decreased postspike gain and
greater apparent stability. Importantly, omitted variables can arise in GLMs
in any situation where an omitted variable affects neural activity and the
effect of the omitted variable is not independent of the included variables.

The case studies here are not unique; many studies have described how
adding variables to a tuning curve or single-neuron model can improve
prediction accuracy. In M1, in addition to movement speed, joint angles,
muscle activity, end-point force, and many other variables also appear to
modulate neural responses (Fetz, 1992; Kalaska, 2009). In addition to speed
and head direction in the hippocampus, theta-band local field potential,
sharp-wave ripples, and environmental features, such as borders, appear to
modulate neural activity (Hartley, Lever, Burgess, & O’Keefe, 2014). And in
V1, there is growing evidence that population activity (Lin, Okun, Caran-
dini, & Harris, 2015) and nonvisual information (Ghazanfar & Schroeder,
2006) modulate neural responses. In each of these systems, neural responses
are affected by many factors. Responding to many task variables may even
be functional, allowing downstream neurons to more effectively discrimi-
nate inputs (Fusi, Miller, & Rigotti, 2016). In any case, it seems clear that our
models do not yet capture the full complexity of neural responses (Caran-
dini et al., 2005). By omitting relevant variables, current models are likely
to be not just less accurate but also biased.

Parameter bias may be problematic in and of itself. However, omitted
variable bias may also have an important effect on generalization perfor-
mance. As Box (1966) noted, in a new context, the effect of the omitted
variables and the relationship between the omitted and included variables
may be different. Since the parameters of the included variables are biased,
this change can reduce generalization accuracy. This phenomena may ex-
plain, to some extent, why tuning models fit in one condition often do not
generalize to others (Graf, Kohn, Jazayeri, & Movshon, 2011; Oby, Ethier,
& Miller, 2013). For models of single-neuron dynamics, omitted variable
bias can also have a negative effect on the accuracy of simulations. Pre-
vious work has shown that simulating a GLM with postspike filters esti-
mated from data often results in unstable, diverging simulations. Although
several methods for stabilizing these simulations have recently been de-
veloped (Gerhard et al., 2017; Hocker & Park, 2017), one, perhaps primary,
reason for this instability may be that the postspike filters are biased due to
omitted synaptic input. Since estimated postspike filters may reflect not just
intrinsic neuron properties but also the statistics of the input, interpreting
and comparing postspike filters may be difficult. Different history param-
eters may be different due to intrinsic biophysics (Tripathy, Padmanabhan,
Gerkin, & Urban, 2013) or due to differing input, and resolving this ambigu-
ity will likely involve more accurately accounting for the input itself (Kim
& Shinomoto, 2012).

The possibility of omitted variable bias does not mean that estimated pa-
rameters, predictions, and simulations from simplified model are useless,
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but it may mean that we need to be cautious in interpreting these models
and their outputs. When reporting the results of regression, in addition to
avoiding describing associations with causal language, it may be generally
useful to discuss known and potential confounds. Previous studies have al-
ready identified several specific cases of omitted variable bias where careful
interpretation is necessary. For instance, omitted common input can bias es-
timates of interactions between neurons (Brody, 1999), and omitted history
effects can bias receptive field estimates (Pillow & Simoncelli, 2003). In es-
timating peristimulus time histograms, omitting variables that account for
trial-to-trial variation may cause biases (Czanner et al., 2008) or issues with
identifiability (Amarasingham, Geman, & Harrison, 2015). Similarly, biases
due to spike sorting errors (Ventura, 2009) could be framed as a result of
omitting variables related to missing or excess spikes. Since we typically
do not model or observe all the variables that affect neural activity, omit-
ted variable problems are likely to be pervasive in systems neuroscience far
beyond these specific cases.

Although we have focused on GLMs here, omitted variable bias can af-
fect any model, and other types of model misspecification can also result in
biased parameter estimates. Adding input nonlinearities (Ahrens, Panin-
ski, & Sahani, 2008; David, Mesgarani, Fritz, & Shamma, 2009), interaction
effects (McFarland, Cui, & Butts, 2013), or higher-order terms to the GLM
(Berger, Song, Chan, & Marmarelis, 2010; Park, Archer, Priebe, & Pillow,
2013) may fix certain types of model misspecification, but any model that
omits relevant variables is still likely to suffer from the same problems. This
includes both machine learning methods that may provide better predic-
tion accuracy than GLMs (Benjamin et al., 2017) and single-neuron models
aiming to describe greater biophysical detail (Herz, Gollisch, Machens, &
Jaeger, 2006). Unlike over-fitting or nonconvergence (Zhao & Iyengar, 2010),
omitted variable bias will generally not be resolved by including additional
data or by adding regularization. Moreover, adding one omitted variable,
as we have done with the case studies here, is no guarantee that there are
not other relevant variables being omitted.

One approach that could potentially reduce omitted variable bias is la-
tent variable modeling, where the effects of unknown covariates are explic-
itly included (constrained by simplifying assumptions). Recent work has
introduced latent variables for neural activity with linear dynamics (Kulka-
rni & Paninski, 2007; Paninski et al., 2010; Smith & Brown, 2003), switching
dynamics (Putzky, Franzen, Bassetto, & Macke, 2014), rectification (White-
way & Butts, 2017), and oscillations (Arai & Kass, 2017). These models ap-
pear to outperform GLMs on population data in retina (Vidne et al., 2012),
visual (Archer, Koster, Pillow, & Macke, 2014), and motor cortices (Chase,
Schwartz, & Kass, 2010; Macke et al., 2011). Inferring latent variables re-
quires making (sometimes strong) assumptions about the nature of the
variables and may require observations from multiple neurons or across
multiple trials, but by approximating some of the effects of relevant omitted
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variables, latent variables may reduce omitted variable bias. However, gen-
erally determining when relevant variables are omitted from a model and
what those variables are is not a trivial problem.

There is a well-known aphorism from George E. P. Box: “All models are
wrong, but some are useful.” The lengthier version of this quip is, “All mod-
els are approximations. Essentially, all models are wrong, but some are use-
ful. However, the approximate nature of the model must always be borne
in mind” (Box & Draper, 1987). GLMs are certainly useful descriptions of
neural activity. They are computationally tractable, can disentangle the rel-
ative influence of multiple covariates, and often provide the core compo-
nents for Bayesian decoders. Here we emphasize, however, one ubiquitous
circumstance in systems neuroscience where the “approximate nature” of
the models should be “borne in mind.” Namely, omitted variables can bias
estimates of the included effects.

4 Methods

4.1 Neural Data. All data analyzed here was previously recorded and
shared by other researchers through the Collaborative Research in Compu-
tation Neuroscience (CRCNS) Data Sharing Initiative (crcns.org).

Data from primary motor cortex are from CRCNS data set DREAM-
Stevenson_2011 (Walker & Kording, 2013). These data were recorded us-
ing a 100 electrode Utah array (Blackrock Microsystems, 400 mm spacing,
1.5 mm length) chronically implanted in the arm area of primary motor cor-
tex of an adult macaque monkey. The monkey made center-out reaches in a
20 × 20 cm workspace while seated in a primate chair, grasping a two-link
manipulandum in the horizontal plane (arm roughly in a sagittal plane).
Each trial for the center-out task began with a hold period at a center target
(0.3–0.5 s). After a go cue, subjects had 1.25 s to reach one of eight peripheral
targets and then hold this outer target for at least 0.2 s to 0.5 s. Each success
was rewarded with juice, and feedback (1–2 cm diam) about arm position
was displayed on-screen as a circular cursor. Spike sorting was performed
by manual cluster cutting using an offline sorter (Plexon) with waveforms
classified as single- or multi-unit based on action potential shape and mini-
mum ISIs greater than 1.6 ms (yielding n = 81 single units). Here we model
tuning curves using spike counts between 150 ms before to 350 ms after the
speed reached its half-max. Average movement speed for each trial was cal-
culated from 0 to 250 ms after the speed reached its half-max (290 trials in
total). (For details of the surgery, recording, and spike sorting, see Steven-
son et al., 2011.)

Hippocampal data are from CRCNS HC-3 (Mizuseki, Sirota, Pastalkova,
Diba, & Buzsáki, 2013). Here we use recording sessions ec16.19.272 and
ec014.215, where a Long-Evans rat was sleeping and foraging in a 180 ×
180 cm maze, respectively. For both recordings, 12 shank silicon probes
(with 8 recording sites each, 20 μm separation) were implanted in CA1
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(8 shanks) and EC3-5 (4 shanks) (based on histology). Spikes were sorted
automatically using KlustaKwick and then manually adjusted (Klusters),
yielding 85 units for the sleep data and 117 for the open field data. For the
sleep data, where we model postspike history effects, the spike trains were
binned at 1 ms and the recording length was 27 min. Here we model all neu-
rons with firing rates above 0.5 Hz (n = 39). For the open field data, where
we model place tuning, spike trains were binned at 250 ms, and the record-
ing length was 93 min. Place cells (n = 68) were selected based on having
an overall firing rate below 5 Hz (to rule out interneurons), a peak firing
rate above 2 Hz, and a contiguous set of pixels (after smoothing with an
isotropic gaussian σ = 8 cm) of at least 200 cm2 where the firing rate was
above 10% of the peak rate. For details of the surgery, recording, and spike
sorting see (Diba & Buzsaki, 2008; Mizuseki, Sirota, Pastalkova, & Buzsáki,
2009).

Data from primary visual cortex are from CRCNS data set PVC-11
(Kohn & Smith, 2016). Here we use spontaneous activity, during a gray
screen, (monkey 1) and responses to drifting sine-wave gratings (monkey 1)
both from an anaesthetized (Sufentanil: 4–18 microg/kg/hr) adult monkey
(Macaca fascicularis). Recordings were made in parafoveal V1 (RFs within
5 degrees of the fovea) using a 96-channel multielectrode array (Black-
rock Microsystems), 400 mm electrode spacing, and 1 mm depth. After
automatic spike sorting and manual cluster adjustment, 87 and 106 units
were recorded during spontaneous activity and grating presentation, re-
spectively. Only neurons with waveform SNR >2 and firing rates >1 Hz
were analyzed, n = 62 for spontaneous and n = 90 for grating data. For the
spontaneous activity, we bin spike counts at 1 ms, and the recording length
was 20 min. For the drifting grating data, we analyzed spike counts from
200 ms to 1.2 s after stimulus onset on each trial: 12 directions, 2400 trials to-
tal. Gratings had a spatial frequency of 1.3 cyc/deg, temporal frequency of
6.25 Hz, and size of 8 to 10 degrees (to cover receptive fields of all recorded
neurons) and were presented for 1.25 s with a 1.5 s intertrial interval be-
tween stimuli. (For surgical, stimulus, and preprocessing details see (Kelly
et al., 2010, and Smith & Kohn, 2008.)

4.2 Tuning Curve Models. For the M1 data we use a circular, cubic B-
spline basis with five equally spaced knots,

λ(θ ) = exp

(
μ +

∑
i

βigi(θ )

)
,

where g(·) are the splines that depend on the reach direction θ , weighted by
parameters β, and the parameter μ defines a baseline firing rate. To include
the effect of speed, we then add three covariates,
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λ(θ, s) = exp

(
μ +

∑
i

βigi(θ ) + α1s + α2s cos(θ ) + α3s sin(θ )

)
,

where s indicates the speed, and the parameters α allow for a multiplicative
speed effect, as well as possible cosine-tuned speed x direction interactions
as in Moran and Schwartz (1999).

For place fields in hippocampus, we use isotropic gaussian radial basis
functions f (·) equally spaced (30 cm) on a 6×6 square lattice with a standard
deviation of 30 cm:

λ(x) = exp

(
μ +

∑
i

βi fi(x)

)
.

We find that the effect of speed is well modeled using the log-transformed
speed s, and to model head direction-dependence, we use circular, cubic
B-splines g(·) with six equally spaced knots:

λ(x, s, θ ) = exp

⎛⎝μ +
∑

i

βi fi(x) + γ logs +
∑

j

α jg j(θ )

⎞⎠ .

For the V1 data, we again use a circular, cubic B-spline basis for the direction
of the sine-wave grating (seven equally spaced knots):

λ(θ ) = exp

(
μ +

∑
i

βigi(θ )

)
.

We find that the effect of population activity is well modeled using the total
log-transformed firing rate of all neurons except the one being modeled,

λ(θ, z) = exp

(
μ +

∑
i

βigi(θ ) + αz

)
,

where z = ∑
i �= j log (ni + 1). In all models, to avoid overfitting, especially

for low firing rate neurons, we add a small L2 penalty to the log likelihood
with a fixed hyperparameter of 10−4.

4.3 Postspike History Simulations and Population Rate Models. In
addition to capturing tuning curves, many studies have used GLMs to de-
scribe the dynamics of single spike trains (Brillinger, 1988; Harris et al., 2003;
Okatan, Wilson, & Brown, 2005; Paninski, 2004; Truccolo et al., 2005; Weber
& Pillow, 2017). Here, to account for postspike history effects, we use a GLM
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taking the form

λ(t) = exp(μ + αh(t)),

n(t) ∼ Poisson(λ(t)t),

where h(t) denotes the vector of spike history covariates representing the
recent history of spiking and μ determines a baseline firing rate. Here we as-
sume hi(t) = ∑

τ>0 fi(τ )n(t − τ ), and we use neuron-specific, cubic B-spline
bases f (·) whose knots are determined by the quantiles of each neuron’s ISI
distribution. Specifically, we choose knots spaced between 10 and 400 ms
(HC) or 2 and 200 ms (V1), where the spacing follows equal percentile re-
gions of the ISI distribution in that same range. This gives six basis func-
tions, and coefficients α to capture the spike history. To enforce refractori-
ness, we fix the coefficient of the fastest basis (which peaks at 0 and ends at
10 ms) to be −5, leaving five coefficients to be estimated.

The population rate model simply adds covariates where, for each
neuron i:

λi(t) = exp

⎛⎝μi + αihi(t) + βig

⎛⎝∑
j

n j �=i(t)

⎞⎠⎞⎠ ,

ni(t) ∼ Poisson(λi(t)t).

Here we use a set of acausal gaussian filters for g(·) with standard deviations
20, 50, and 100 ms. Note that spikes from the neuron being modeled are
excluded from the population covariates.

4.4 Stability Analysis. Here we make use of a stability analysis pro-
posed in Gerhard et al. (2017). Briefly, we use a quasi-renewal approxima-
tion of the conditional intensity by considering the effect of the most recent
spike, at time t′, and averaging over possible spike histories preceding this
spike,

λ0(t, t′) = exp(μ + H(t − t′))〈exp(H ∗ S)〉S(t<t′ ),

where H(t − t′) = α f (t − t′) and S represents the history of spiking. By as-
suming that S is generated from a homogeneous Poisson process with firing
rate A0, the second term can be approximated by

〈exp(H ∗ S)〉S(t<t′ ) ≈ exp
(

A0

∫ ∞

t−t′
(eH(u) − 1)du

)
.
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Given this approximation, we can then estimate the interspike interval dis-
tribution as we would for a true renewal process and the steady-state dis-
tribution of interspike intervals is given by

P(τ ) = exp
(

−
∫ τ

0
λ0(u)du

)
λ0(τ ),

and the predicted steady-state firing rate is f (A0) = 1/EP(τ )[τ ].
To assess stability, we can then examine how the predicted steady-state

firing rate depends on the assumed rate of the homogeneous Poisson pro-
cess A0. In particular, when f (A0) = A0 the quasi-renewal model has a fixed
point. To allow for external input, we incorporate the average effect of the
covariates X into the conditional intensity approximation:

λ0(t, t′) = exp(μ + h(t − t′) + 〈Xβ〉)〈exp(h ∗ S )〉S (t<t′ ),

λ0(t, t′) = exp(μ + h(t − t′))〈exp(Xβ )〉t〈exp(h ∗ S )〉S (t<t′ ).

Note that in general, adding inputs X will only change the stability of the
model to the extent that these covariates change the estimate of h.
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